Estrategias de adaptabilidad estáticamente estables al cambio de terreno para un robot caminante de seis extremidades

X. Yamile Sandoval Castro, Eduardo Castillo Castañeda

Resumen

Este artículo presenta la cinemática directa e inversa en posición de un robot caminante hexápodo, tomando en cuenta la pose del tórax. También se presentan tres estrategias de adaptabilidad al terreno que garantizan la estabilidad: orientación constante del tórax, estrategia geométrica y estrategia de emergencia. El diseño de las estrategias de adaptabilidad considera los parámetros geométricos y el peso de todos los elementos. La cinemática directa e inversa es esencial para redireccionar la postura del robot caminante. La estabilidad de las estrategias es evaluada con el margen normalizado de estabilidad energético (NESM). Las estrategias fueron simuladas en software especializado y se validaron experimentalmente.


Palabras clave

Cinemática directa; Cinemática inversa; Orientación constante del tórax; Estrategia de emergencia; Estrategia geométrica; Estabilidad

Texto completo:

PDF

Referencias

Carabin, G., Gasparetto, A., Mazzetto, F., Vidoni, R., 2016. Design, implementation and validation of a stability model for articulated autonomous robotic systems. Robotics and Autonomous Systems 83 (Supplement C), 158 - 168. https://doi.org/10.1016/j.robot.2016.05.008

Görner, M., Stelzer, A., May 2013. A leg proprioception based 6 dof odometry for statically stable walking robots. Auton. Robots 34 (4), 311-326. https://doi.org/10.1007/s10514-013-9326-3

Jun, J.-Y., Saut, J.-P., Benamar, F., 2016. Pose estimation-based path planning for a tracked mobile robot traversing uneven terrains. Robotics and Autonomous Systems 75 (Part B), 325 - 339. https://doi.org/10.1016/j.robot.2015.09.014

Kim, H., Lee, D., Liu, Y., Jeong, K., Seo, T., 2016. Hexapedal robotic platform for amphibious locomotion on ground and water surface. Journal of Bionic Engineering 13 (1), 39 - 47. https://doi.org/10.1016/S1672-6529(14)60158-X

Kimura, H., Fukuoka, Y., 2006. Dynamics-Based Motion Adaptation for a Quadruped Robo. Springer Tokyo, Tokyo, Ch. Adaptive Motion of Animals and Machines, pp. 217-226. https://doi.org/10.1007/4-431-31381-8_19

Koco, E., Mutka, A., Kovacic, Z., 2016. New variable passive-compliant element design for quadruped adaptation to stiness-varying terrain. International Journal of Advanced Robotic Systems 13 (3), 90. https://doi.org/10.5772/63893

Komatsu, H., Ogata, M., Hodoshima, R., Endo, G., Fukushima, E. F., Hirose, S., 2014. Development of quadruped walking robot titan xii and its basic consideration on the control of large obstacle traversing motion. Transactions of the JSME (in Japanese) 80 (813), DR0128-DR0128. https://doi.org/10.1299/transjsme.2014dr0128

Loc, V.-G., goh Roh, S., Koo, I. M., Tran, D. T., Kim, H. M., Moon, H., Choi, H. R., 2010. Sensing and gait planning of quadruped walking and climbing robot for traversing in complex environment. Robotics and Autonomous Systems 58 (5), 666 - 675. https://doi.org/10.1016/j.robot.2009.11.007

Mao, S., Dong, E., Jin, H., Xu, M., Zhang, S., Yang, J., Low, K. H., 2014. Gait study and pattern generation of a starfish-like soft robot with flexible rays actuated by smas. Journal of Bionic Engineering 11 (3), 400 - 411. https://doi.org/10.1016/S1672-6529(14)60053-6

Pollack, J., Bedau, M. A., Husbands, P., Watson, R. A., Ikegami, T., 2004. The Evolution of Control and Adaptation in a 3D Powered Passive DynamicWalker. MIT Press, Ch. Artificial Life IX:Proceedings of the Ninth International Conference on the Simulation and Synthesis of Living Systems, pp. 139-145.

Raibert, M., Blankespoor, K., Nelson, G., Playter, R., 2008. Bigdog, the roughterrain quadruped robot. IFAC Proceedings Volumes 41 (2), 10822 - 10825, 17th IFAC World Congress. https://doi.org/10.3182/20080706-5-KR-1001.01833

Rejas, J.-I., Sanchez, A., de Rivera, G. G., Prieto, M., Garrido, J., 2015. Environment mapping using a 3d laser scanner for unmanned ground vehicles. Microprocessors and Microsystems 39 (8), 939 - 949. https://doi.org/10.1016/j.micpro.2015.10.003

Rushworth, A., Cobos-Guzman, S., Axinte, D., Raes, M., 2015. Pre-gait analysis using optimal parameters for a walking machine tool based on a free-leg hexapod structure. Robotics and Autonomous Systems 70 (Supplement C), 36 - 51. https://doi.org/10.1016/j.robot.2015.04.001

Sun, Y., Yang, Y., Ma, S., Pu, H., Jun 2016. Design of a high-mobility multiterrain robot based on eccentric paddle mechanism. Robotics and Biomimetics 3 (1), 8. https://doi.org/10.1186/s40638-016-0041-3

Taniwaki, M., Iida, M., Kang, D., Tanaka, M., Izumi, T., Umeda, M., 2008.Walking behaviour of a hexapod robot using a wind direction detector. Biosystems Engineering 100 (4), 516 - 523. https://doi.org/10.1016/j.biosystemseng.2008.04.017

Zhang, H., Liu, Y., Zhao, J., Chen, J., Yan, J., 2014. Development of a bionic hexapod robot for walking on unstructured terrain. Journal of Bionic Engineering 11 (2), 176 - 187. https://doi.org/10.1016/S1672-6529(14)60041-X

Abstract Views

2103
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912