Mínimos Cuadrados Recursivos para un Manipulador que Aprende por Demostración

José de Jesús Rubio

Mexico

Instituto Politecnico Nacional

Seccion de Estudios de Posgrado e Investigacion, ESIME Azcapotzalco

Enrique García

Mexico

Instituto Politecnico Nacional

Seccion de Estudios de Posgrado e Investigacion, ESIME Azcapotzalco

Gustavo Aquino

Mexico

Instituto Politecnico Nacional

Seccion de Estudios de Posgrado e Investigacion, ESIME Azcapotzalco

Carlos Aguilar-Ibáñez

Mexico

Instituto Politecnico Nacional

Centro de Investigación en Computación

Jaime Pacheco

Mexico

Instituto Politecnico Nacional

Seccion de Estudios de Posgrado e Investigacion, ESIME Azcapotzalco

Jesús Alberto Meda-Campaña

Mexico

Instituto Politecnico Nacional

Sección de Estudios de Posgrado e Investigación, Esime Zacatenco
|

Aceptado: 13-07-2018

|

Publicado: 20-03-2019

DOI: https://doi.org/10.4995/riai.2019.8899
Datos de financiación

Descargas

Palabras clave:

Manipulador, mínimos cuadrados recursivos, trayectoria, cinematica, modelo, plataforma embebida

Agencias de apoyo:

Instituto Politecnico Nacional

Resumen:

En este trabajo, se desarrolla un sistema de control automatizado para permitir que un manipulador aprenda y planifique las trayectorias a partir de las demostraciones dadas por la mano de un usuario. La entrada de datos es adquirida por un sensor, y se aprende su comportamiento a través de un algoritmo de aprendizaje automático basado en los mínimos cuadrados recursivos. Se utiliza un perfil de trayectoria de interpoladores a tramos para evitar el movimiento impulsivo del manipulador. Se realiza el análisis de las cinemáticas directa e inversa para obtener los valores de las variables articulares para el manipulador. Se crea un modelo dinámico usando la formulación de Newton-Euler. Se aplica un control proporcional derivativo al sistema. Los sistemas de monitoreo y control se implementan en una plataforma embebida para fines de prueba.
Ver más Ver menos

Citas:

Calderón C. A., Ramírez C., Barros V., Punin G., 2017. Design and deployment of grasp control system applied to robotic hand prosthesis, IEEE Latin America Transactions, 15, (2), 181-188. https://doi.org/10.1109/tla.2017.7854610

Candelas F. A., Torres F., Gil P., Ortiz F., Puente S., Pomares J., 2004. Laboratorio virtual remoto para robótica y evaluación de su impacto en la docencia, Revista Iberoamericana de Automática e Informática Industrial, 1, (2), 49-57. https://doi.org/10.1016/s1697-7912(10)70011-x

Craig J. J., 2006. Introducción a la robótica, tercera edición, New Jersey, Prentice Hall.

Espinosa F., Lázaro J. L., Olivares J., 2018. Proyecto alcor: contribuciones a la optimización del guiado remoto de robots en espacios inteligentes, Revista Iberoamericana de Automática e Informática industrial. https://doi.org/10.4995/riai.2018.9199

García M. A., Gallardo J., Rodríguez R., Alcaraz L. A., 2017. A new four-degrees-of-freedom parallel manipulator, IEEE Latin America Transactions, 15, (5), 928-934. https://doi.org/10.1109/tla.2017.7910208

Hernández K., Bacca B., Posso B., 2017. Multi-goal path planning autonomous system for picking up and delivery tasks in mobile robotics, IEEE Latin America Transactions, 15, (2), 232-238. https://doi.org/10.1109/tla.2017.7854617

Hernández Guzmán V. M., Antonio Cruz M., Silva Ortigoza R., 2016. Linear state feedback regulation of a furuta pendulum: design based on differential flatness and root locus, IEEE Access, 4, 8721-8736. https://doi.org/10.1109/access.2016.2637822

Kanj S., Abdallah F., 2016. Editing training data for multi-label classification with the k-nearest neighbor rule, Pattern Analysis and Applications, 19, (1), 145-161. https://doi.org/10.1007/s10044-015-0452-8

Li X., Pan Y., Chen G., Yu H., 2017. Multi-modal control scheme for rehabilitation robotic exoskeletons, International Journal of Robotics Research, 36, (5), 759-777. https://doi.org/10.1177/0278364917691111

Liu Z., Liu J., 2017. Adaptive iterative learning boundary control of a flexible manipulator with guaranteed transient performance, Asian Journal of Control, 19, (4), 1-12. https://doi.org/10.1002/asjc.1379

Marín L., Valles M., Soriano A., Valera A., Albertos P., 2014. Event-based localization in ackermann steering limited resource mobile robots, IEEE/ASME Transactions on Mechatronics, 19, (4), 1171-1182. https://doi.org/10.1109/tmech.2013.2277271

Marín L., Valles M., Soriano A., Valera A., Albertos P., 2013. Multi sensor fusion framework for indoor-outdoor localization of limited resource mobile robots, Sensors, 13, 14133-14160. https://doi.org/10.3390/s131014133

Martín A., Terrile S., Barrientos A., del Cerro J., 2018. Robots hiperredundantes: clasificación, estado del arte y problemática, Revista Iberoamericana de Automática e Informática Industrial. https://doi.org/10.4995/riai.2018.9207

Méndez Pereza J. A., Torres S., Reboso J. A., Reboso H., 2011. Estrategias de control en la práctica de anestesia, Revista Iberoamericana de Automática e Informática industrial, 8, 241-249. https://doi.org/10.1016/j.riai.2011.06.011

Ngoc Thanh H. L. N., Kyung Hong S., 2018. Completion of collision avoidance control algorithm for multicopters based on geometrical constraints, IEEE Access, 6, 27111-27126. https://doi.org/10.1109/access.2018.2833158

Olivares M., Albertos P., 2014. Linear control of the flywheel inverted pendulum, ISA Transactions, 53, 1396-1403. https://doi.org/10.1016/j.isatra.2013.12.030

Ortigoza R. S., Sánchez J. R. G., Guzmán V. M. H., Sánchez C. M., Aranda M. M., 2016. Trajectory tracking control for a differential drive wheeled mobile robot considering the dynamics related to the actuators and power stage, IEEE Latin America Transactions, 14, (2), 657-664. https://doi.org/10.1109/tla.2016.7437207

Páramo Carranza L. A., Meda Campaña J. A., Rubio J. J., Tapia Herrera R., Curtidor López A. V., Grande Meza A., Cazares Ramirez I., 2017. Discrete-time Kalman filter for Takagi-Sugeno fuzzy models, Evolving Systems, 8, (3) 211-219. https://doi.org/10.1007/s12530-017-9181-0

Peng Y., Liu J., He W., 2017. Boundary control for a flexible inverted pendulum system based on a pde model, Asian Journal of Control, 19, (2), 1-10. https://doi.org/10.1002/asjc.1336

Pomares J., García G. J., Peréa I., Jara C., Torres F., 2012. Cámara virtual de referencia: una aproximación para el guiado combinado de robots manipuladores mediante una única cámara, Revista Iberoamericana de Automática e Informática Industrial, 9, 314-323. https://doi.org/10.1016/j.riai.2012.05.004

Pan Y., Zhang J., Yu H., 2016. Model reference composite learning control without persistency of excitation, IET Control Theory & Applications, 10, (16), 1963-1971. https://doi.org/10.1049/iet-cta.2016.0032

Rosado W. M. A., Valdés L. G. V., Ortega A. B., Ascencio J. R., Beltrán C. D. G., 2017. Passive rehabilitation exercises with an ankle rehabilitation prototype based in a robot parallel structure, IEEE Latin America Transactions, 15, (1), 48-56. https://doi.org/10.1109/tla.2017.7827887

Rubio J. J., 2018. Discrete time control based in neural networks for pendulums, Applied Soft Computing, 68, 821-832. https://doi.org/10.1016/j.asoc.2017.04.056

Rubio J. J., Vázquez D. M., Mujica-Vargas D., 2013. Acquisition system an approximation of brain signals. IET Science, Measurement, and Technology, 7, (4), 232-239. https://doi.org/10.1049/iet-smt.2012.0138

Rubio J. J., 2017. Interpolation neural network model of a manufactured wind turbine, Neural Computing and Applications, 28, (8), 2017-2028. https://doi.org/10.1007/s00521-015-2169-4

Sa S. T. L., Fernandes C. C., Yanaguibashi E. A., Barros R. P., Burlamaqui A. M. F., Goncalves L. M. G., 2017. Educaval: towards assessment of educational robotics softwares, IEEE Latin America Transactions, 15, (4), 720-728. https://doi.org/10.1109/tla.2017.7896400

Serrano M. E., Godoy S. A., Romoli S., Scaglia G. J. E., 2018. A numerical approximation-based controller for mobile robots with velocity limitation, Asian Journal of Control, 20, (1), 1-13. https://doi.org/10.1002/asjc.1522

Serrano F. E., Rodríguez-Gómez B. A., Cardona M., Obtención de un modelo dinámico para un robot 3RRR basado en teoría de screws, Revista Iberoamericana de Automática e Informática Industrial. https://doi.org/10.4995/riai.2018.8725

Sun T., Zhang J., Pan Y., 2017. Active disturbance rejection control of surface vessels using composite error updated extended state observer, Asian Journal of Control, 19, (5), 1802-1811. https://doi.org/10.1002/asjc.1489

Torres S., Méndez J. A., 2009. Seguimiento de trayectorias en robots manipuladores: revisión de soluciones y nuevas propuestas, Revista Iberoamericana de Automática e Informática Industrial, 6, (4), 80-92. https://doi.org/10.1016/s1697-7912(09)70111-6

Vázquez D. M., Rubio J. J., Pacheco J., 2012. Characterization framework for epileptics signals, IET Image Processing, 6, (9), 1227-1235. https://doi.org/10.1049/iet-ipr.2012.0037

Zhang C., Sun T., Pan Y., 2014. Neural network observer-based finite-time formation control of mobile robots, Mathematical Problems in Engineering, 2014, 1-9. https://doi.org/10.1155/2014/267307

Ver más Ver menos