Fusión de Imágenes Multi-Foco con Ventanas Variables

Felix Calderon, Adan Garnica-Carrillo, Juan J. Flores

Resumen

En este artículo presentamos el Algoritmo Combinación Lineal de Imágenes con Ventanas Variables (CLI-VV) para la fusión de imágenes multi-foco. A diferencia del Algoritmo CLI-S presentado en un trabajo anterior, el algoritmo CLI-VV permite determinar automáticamente el tamaño óptimo de la ventana en cada píxel para la segmentación de las regiones con la mayor nitidez. También presentamos la generalizado el Algoritmo CLI-VV para la fusión de conjuntos de imágenes multi-foco con más de dos imágenes. A este nuevo algoritmo lo denominamos Fusión Multi-foco con Ventanas Variables (FM-VV). El Algoritmo CLI-VV se probó con 21 pares de imágenes sintéticas y 29 pares de imágenes multi-foco reales, y el Algoritmo FM-VV sobre 5 tríos de imágenes multi-foco. En todos los ejemplos se obtuvo un porcentaje de acierto competitivos, producidos en tiempos de ejecución menores a los reportados en la literatura.


Palabras clave

Fusión de imágenes multi-foco; Ventanas deslizantes; Imágenes integrales

Texto completo:

PDF

Referencias

Aslantas, V., Kurban, R., 2010. Fusion of multi-focus images using differential evolution algorithm. Expert Systems with Applications 37 (12), 8861 – 8870. https://doi.org/10.1016/j.eswa.2010.06.011

Aslantas, V., Toprak, A. N., 2014. A pixel based multi-focus image fusion method. Optics Communications 332, 350 – 358. https://doi.org/10.1016/j.optcom.2014.07.044

Aslantas, V., Toprak, A. N., 2017. Multi-focus image fusion based on optimal defocus estimation. Computers and Electrical Engineering. https://doi.org/10.1016/j.compeleceng.2017.02.003

Assirati, L., Silva, N. R., Berton, L., Lopes, A. A., Bruno, O. M., 2014. Performing edge detection by difference of gaussians using q-gaussian kernels. Journal of Physics: Conference Series 490 (1), 012020. https://doi.org/10.1088/1742-6596/490/1/012020

Bai, X., Zhang, Y., Zhou, F., Xue, B., 2015. Quadtree-based multi-focus image fusion using a weighted focus-measure. Information Fusion 22, 105 – 118. https://doi.org/10.1016/j.inffus.2014.05.003

Calderon, F., Garnica, A., 2014. Multi focus image fusion based on linear combination of images. IEEE, pp. 1–7. https://doi.org/10.1109/ROPEC.2014.7036340

Calderon, F., Garnica-Carrillo, A., Flores, J. J., 2016. Fusión de imágenes multi foco basado en la combinación lineal de imágenes utilizando imágenes incrementales. Revista Iberoamericana de Automática e Informática Industrial RIAI 13 (4), 450 – 461. https://doi.org/10.1016/j.riai.2016.07.002

Cao, L., Jin, L., Tao, H., Li, G., Zhuang, Z., Zhang, Y., Feb 2015. Multi-focus image fusion based on spatial frequency in discrete cosine transform domain. Signal Processing Letters, IEEE 22 (2), 220–224. https://doi.org/10.1109/LSP.2014.2354534

Chai, Y., Li, H., Li, Z., 2011. Multifocus image fusion scheme using focused region detection and multiresolution. Optics Communications 284 (19), 4376 – 4389. https://doi.org/10.1016/j.optcom.2011.05.046

De, I., Chanda, B., 2013. Multi-focus image fusion using a morphology-based focus measure in a quad-tree structure. Information Fusion 14 (2), 136 – 146. https://doi.org/10.1016/j.inffus.2012.01.007

Duan, J., Meng, G., Xiang, S., Pan, C., 2014. Multifocus image fusion via focus segmentation and region reconstruction. Neurocomputing 140, 193 – 209. https://doi.org/10.1016/j.neucom.2014.03.023

Eskicioglu, A., Fisher, P., Dec 1995. Image quality measures and their performance. Communications, IEEE Transactions on 43 (12), 2959–2965. https://doi.org/10.1109/26.477498

Kong, W., Lei, Y., 2017. Multi-focus image fusion using biochemical ion exchange model. Applied Soft Computing 51, 314 – 327. https://doi.org/10.1016/j.asoc.2016.11.033

Kuthirummal, S., Nagahara, H., Zhou, C., Nayar, S., Jan 2011. Flexible depth of field photography. Pattern Analysis and Machine Intelligence, IEEE Transactions on 33 (1), 58–71. https://doi.org/10.1109/TPAMI.2010.66

Lewis, J. J., O'Callaghan, R. J., Nikolov, S. G., Bull, D. R., Canagarajah, N., 2007. Pixel- and region-based image fusion with complex wavelets. Information Fusion 8 (2), 119 – 130, special Issue on Image Fusion: Advances in the State of the Art. https://doi.org/10.1016/j.inffus.2005.09.006

Li, H., Chai, Y., Li, Z., 2013a. Multi-focus image fusion based on nonsubsampled contourlet transform and focused regions detection. Optik – International Journal for Light and Electron Optics 124 (1), 40 – 51. https://doi.org/10.1016/j.ijleo.2011.11.088

Li, H., Chai, Y., Li, Z., 2013b. A new fusion scheme for multifocus images based on focused pixels detection. Machine vision and applications 24 (6), 1167–1181. https://doi.org/10.1007/s00138-013-0502-4

Li, H., Manjunath, B., Mitra, S., 1995. Multisensor image fusion using the wavelet transform. Graphical Models and Image Processing 57 (3), 235 – 245. https://doi.org/10.1006/gmip.1995.1022

Li, S., Kang, X., Fang, L., Hu, J., Yin, H., 2017. Pixel-level image fusion: A survey of the state of the art. Information Fusion 33, 100 – 112. https://doi.org/10.1016/j.inffus.2016.05.004

Li, S., Kwok, J. T., Wang, Y., 2001. Combination of images with diverse focuses using the spatial frequency. Information Fusion 2 (3), 169 – 176. https://doi.org/10.1016/S1566-2535(01)00038-0

Li, S., Kwok, J. T., Wang, Y., 2002. Multifocus image fusion using artificial neural networks. Pattern Recognition Letters 23 (8), 985 – 997. https://doi.org/10.1016/S0167-8655(02)00029-6

Li, S., Yang, B., 2008a. Multifocus image fusion by combining curvelet and wavelet transform. Pattern Recognition Letters 29 (9), 1295–1301. https://doi.org/10.1016/j.patrec.2008.02.002

Li, S., Yang, B., 2008b. Multifocus image fusion using region segmentation and spatial frequency. Image and Vision Computing 26 (7), 971 – 979. https://doi.org/10.1016/j.imavis.2007.10.012

Li, X., He, M., Roux, M., August 2010. Multifocus image fusion based on redundant wavelet transform. Image Processing, IET 4 (4), 283–293. https://doi.org/10.1049/iet-ipr.2008.0259

Liu, Y., Chen, X., Peng, H., Wang, Z., 2017a. Multi-focus image fusion with a deep convolutional neural network. Information Fusion 36, 191 – 207. https://doi.org/10.1016/j.inffus.2016.12.001

Liu, Z., Chai, Y., Yin, H., Zhou, J., Zhu, Z., 2017b. A novel multi-focus image fusion approach based on image decomposition. Information Fusion 35, 102 – 116. https://doi.org/10.1016/j.inffus.2016.09.007

Long, J., Shelhamer, E., Darrell, T., 2014. Fully convolutional networks for semantic segmentation. CoRR abs/1411.4038.

Luo, X., Zhang, J., Dai, Q., 2012. A regional image fusion based on similarity characteristics. Signal Processing 92 (5), 1268 – 1280. https://doi.org/10.1016/j.sigpro.2011.11.021

Ma, Y., Zhan, K.,Wang, Z., service), S. O., 2011. Applications of pulse-coupled neural networks.

Malviya, A., Bhirud, S., Dec 2009. Wavelet based multi-focus image fusion. In: Methods and Models in Computer Science, 2009. ICM2CS 2009. Proceeding of International Conference on. pp. 1–6. https://doi.org/10.1109/ICM2CS.2009.5397990

Nejati, M., Samavi, S., Shirani, S., 2015. Multi-focus image fusion using dictionary-based sparse representation. Information Fusion 25, 72 – 84. https://doi.org/10.1016/j.inffus.2014.10.004

Orozco, R. I., 2013. Fusión de imágenes multifoco por medio de filtrado de regiones de alta y baja frecuencia. Master's thesis, División de Estudios de Postgrado. Facultad de Ingeniería Eléctrica. UMSNH, Morelia Michoacan Mexico.

Pagidimarry, M., Babu, K. A., 2011. An all approach for multi-focus image fusion using neural network. Artificial Intelligent Systems and Machine Learning 3 (12), 732–739.

Pajares, G., de la Cruz, J. M., 2004. A wavelet-based image fusion tutorial. Pattern Recognition 37 (9), 1855 – 1872. https://doi.org/10.1016/j.patcog.2004.03.010

Piella, G., 2003. A general framework for multiresolution image fusion: from pixels to regions. Information Fusion 4 (4), 259 – 280. https://doi.org/10.1016/S1566-2535(03)00046-0

Pramanik, S., Prusty, S., Bhattacharjee, D., Bhunre, P. K., 2013. A region-topixel based multi-sensor image fusion. Procedia Technology 10, 654 – 662. https://doi.org/10.1016/j.protcy.2013.12.407

Qu, X., Hou, Y., Lam, F., Guo, D., Zhong, J., Chen, Z., 2014. Magnetic resonance image reconstruction from undersampled measurements using a patchbased nonlocal operator. Medical Image Analysis 18 (6), 843 – 856, sparse Methods for Signal Reconstruction and Medical Image Analysis. https://doi.org/10.1016/j.media.2013.09.007

Riaz, M., Park, S., Ahmad, M., Rasheed, W., Park, J., 2008. Generalized laplacian as focus measure. In: Bubak, M., van Albada, G., Dongarra, J., Sloot, P. (Eds.), Computational Science ICCS 2008. Vol. 5101 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 1013–1021. https://doi.org/10.1007/978-3-540-69384-0_106

Rivera, M., Ocegueda, O., Marroquin, J., Dec 2007. Entropy-controlled quadratic markov measure field models for efficient image segmentation. Image Processing, IEEE Transactions on 16 (12), 3047–3057. https://doi.org/10.1109/TIP.2007.909384

Sezan, M., Pavlovic, G., Tekalp, A., Erdem, A., Apr 1991. On modeling the focus blur in image restoration. In: Acoustics, Speech, and Signal Processing, 1991. ICASSP-91., 1991 International Conference on. pp. 2485–2488 vol.4. https://doi.org/10.1109/ICASSP.1991.150905

Shah, P., Merchant, S. N., Desai, U. B., 2013. Multifocus and multispectral image fusion based on pixel significance using multiresolution decomposition. Signal, Image and Video Processing 7 (1), 95–109. https://doi.org/10.1007/s11760-011-0219-7

Shi, W., Zhu, C., Tian, Y., Nichol, J., 2005. Wavelet-based image fusion and quality assessment. International Journal of Applied Earth Observation and Geoinformation 6 (3-4), 241 – 251. https://doi.org/10.1016/j.jag.2004.10.010

Tian, J., Chen, L., Sept 2010. Multi-focus image fusion using wavelet-domain statistics. In: Image Processing (ICIP), 2010 17th IEEE International Conference on. pp. 1205–1208. https://doi.org/10.1109/ICIP.2010.5651791

Viola, P., Jones, M., 2001. Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. Vol. 1. pp. I–511–I–518 vol.1. https://doi.org/10.1109/CVPR.2001.990517

Yang, Y., 2011. A novel fDWTg based multi-focus image fusion method. Procedia Engineering 24 (0), 177 – 181, international Conference on Advances in Engineering 2011.

Yang, Y., Huang, S., Gao, J., Qian, Z., 2014. Multi-focus image fusion using an effective discrete wavelet transform based algorithm. Measurement Science Review 14 (2), 102 – 108. https://doi.org/10.2478/msr-2014-0014

Yang, Y., Tong, S., Huang, S., Lin, P., 2015. Multifocus image fusion based on nsct and focused area detection. IEEE Sensors Journal 15 (5), 2824–2838. Zhang, B., Lu, X., Pei, H., Liu, H., Zhao, Y., Zhou, W., 2016a. Multi-focus image fusion algorithm based on focused region extraction. Neurocomputing 174, 733 – 748. https://doi.org/10.1016/j.neucom.2015.09.092

Zhang, Q., long Guo, B., 2009. Multifocus image fusion using the nonsubsampled contourlet transform. Signal Processing 89 (7), 1334 – 1346. https://doi.org/10.1016/j.sigpro.2009.01.012

Zhang, Y., Chen, L., Zhao, Z., Jia, J., 2016b. Multi-focus image fusion based on cartoon-texture image decomposition. Optik - International Journal for Light and Electron Optics 127 (3), 1291 – 1296. https://doi.org/10.1016/j.ijleo.2015.10.098

Zhang, Z., Blum, R., Aug 1999. A categorization of multiscale-decompositionbased image fusion schemes with a performance study for a digital camera application. Proceedings of the IEEE 87 (8), 1315–1326. https://doi.org/10.1109/5.775414

Zhao, H., Li, Q., Feng, H., 2008. Multi-focus color image fusion in the HSI space using the sum-modified-laplacian and a coarse edge map. Image and Vision Computing 26 (9), 1285 – 1295. https://doi.org/10.1016/j.imavis.2008.03.007

Zhou, L., Ji, G., Shi, C., Feng, C., Nian, R., 2006. A Multi-focus Image Fusion Method Based on Image Information Features and the Artificial Neural Networks. Vol. 344. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 747–752. https://doi.org/10.1007/978-3-540-37256-1_91

Zhou, Z., Li, S., Wang, B., 2014. Multi-scale weighted gradient-based fusion for multi-focus images. Information Fusion 20 (0), 60 – 72. https://doi.org/10.1016/j.inffus.2013.11.005

Abstract Views

258
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional

Universitat Politècnica de València

e-ISSN: 1697-7920     ISSN: 1697-7912