Estabilización Automática de una Bicicleta sin Conductor mediante el Enfoque de Control por Rechazo Activo de Perturbaciones

Mauro Baquero-Suárez, John Cortes-Romero, Jaime Arcos-Legarda, Horacio Coral-Enriquez

Resumen

Este trabajo propone una estrategia de Control por Rechazo Activo de Perturbaciones (ADRC), usando observadores extendidos de perturbación, para estabilizar una bicicleta en movimiento, sin conductor y con una velocidad de avance variable. Aunque la bicicleta tiene una dinámica inestable y no lineal alrededor de su posición vertical, que puede modelarse como un sistema Lineal de Parámetros Variantes (LPV) dependientes de la velocidad, el diseño del controlador usa un modelo simplificado de parámetros concentrados invariantes en el tiempo y una velocidad nominal constante. El esquema ADRC agrupa las discrepancias entre el modelo simplificado y la planta, junto con las perturbaciones externas en una señal aditiva unificada, que es estimada a través del observador y realimentada mediante una ley de control lineal para rechazarla. La efectividad de la estrategia es validada mediante una co-simulación entre ADAMS y MATLAB, la cual exhibe un alto desempeño y robustez sobre un modelo dinámico virtual de la bicicleta, sometida a perturbaciones externas severas y variaciones de parámetros.


Palabras clave

Bicicletas robóticas; Rechazo activo de perturbaciones; Control robusto; Observadores de perturbación; Sistemas dinámicos de multicuerpos; Sistemas no lineales; Vehículos autónomos

Texto completo:

PDF

Referencias

Ai-Buraiki, O., Thabit, M. B., Jun 2014. Model Predictive Control Design Approach for Autonomous Bicycle Kinematics Stabilization. In: 22nd Mediterranean Conference of Control and Automation (MED). pp. 380–383. https://doi.org/10.1109/MED.2014.6961401

Bickford, D., Davison, D. E., May 2013. Systematic Multi-Loop Control for Autonomous Bicycle Path following. In: 2013 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). pp. 1–5.

https://doi.org/10.1109/CCECE.2013.6567714

Brizuela, J., Astorga, C., Zavala, A., Pattalochi, L., Canales, F., Dec 2016. State and Actuator Fault Estimation Observer Design Integrated in a Riderless Bicycle Stabilization System. fISAg Transactions 61, 199–210.

Canudas deWit, C., Tsiotras, P., 1999. Dynamic Tire Friction Models for Vehicle Traction Control. In: Proceedings of the 38th IEEE Conference on Decision and Control. Vol. 4. pp. 3746–3751. https://doi.org/10.1109/CDC.1999.827937

Cerone, V., Andreo, D., Larsson, M., Regruto, D., Oct 2010. Stabilization of a Riderless Bicycle, A Linear-Parameter-Varying Approach [applications of control]. Control Systems, IEEE 30 (5), 23–32. https://doi.org/10.1109/MCS.2010.937745

Cortés Romero, J., Luviano Juárez, A., Álvarez Salas, R., Sira Ramírez, H., Aug 2010. Fast Identification and Control of an Uncertain Brushless DC Motor Using Algebraic Methods. In: 12th International Power Electronics Congress (CIEP). pp. 9–14. https://doi.org/10.1109/CIEP.2010.5598844

Cortés Romero, J., Ramos, G., Coral Enriquez, H., Aug 2014. Generalized Proportional Integral Control for Periodic Signals under Active Disturbance Rejection Approach. ISA Transactions 53 (6), 1901–1909. https://doi.org/10.1016/j.isatra.2014.07.001

Emaru, T., Tsuchiya, T., Dec 2005. Research on Estimating Smoothed Value and Differential Value by using Sliding Mode System. IEEE Transactions on Robotics and Automation 21 (6), 391–402.

Gao, B., Junpeng Shao, Xiaodong Yang, Nov 2014. A Compound Control Strategy Combining Velocity Compensation with ADRC of Electroydraulic Position Servo Control System. ISA Transactions 53 (6), 1910–1918. https://doi.org/10.1016/j.isatra.2014.06.011

Goldstein, H., 1953. Classical Mechanics, 3rd Edition. Addison-Wesley, Ch. 5, pp. 184–188.

Gordon Wilson, D., Jim Papadopoulos, 2004. Bicycling Science, 3rd Edition. The MIT Press, Ch. 8, pp. 263–310.

Hwang, C.-L., Hsiu-Ming Wu, Shih, C.-L., May 2009. Fuzzy Sliding Mode Underactuated Control for Autonomous Dynamic Balance of an Electrical Bicycle. IEEE Transactions on Control Systems Technology 17 (3), 658–670. https://doi.org/10.1109/TCST.2008.2004349

Jin, H., Yang, D., Liu, Z., Zang, X., Li, G., Zhu, Y., Dec 2015. A Gyroscope-Based Inverted Pendulum with Application to Posture Stabilization of Bicycle Vehicle. In: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO). pp. 2103–2108. https://doi.org/10.1109/ROBIO.2015.7419084

Kooijman, J. D. G., Meijaard, J. P., Papadopoulos, J. M., Ruina, A., Schwab, A. L., 2011. A Bicycle can be Self-Stable without Gyroscopic or Caster Effects. Science 332 (6027), 339–342. https://doi.org/10.1126/science.1201959

Kooijman, J. D. G., Schwab, A. L., Meijaard, J. P., May 2008. Experimental Validation of a Model for the Motion of an Uncontrolled Bicycle. Multibody System Dynamics 19 (1), 115–132. https://doi.org/10.1007/s11044-007-9050-x

Lam, P. Y., Sep 2011. Gyroscopic Stabilization of a Kid-Size Bicycle. In: 2011 IEEE 5th International Conference on Cybernetics and Intelligent Systems (CIS). pp. 247–252. https://doi.org/10.1109/ICCIS.2011.6070336

Lewis, F. L., Popa, L. X. D., 2008. Optimal and Robust Estimation, with an Introduction to Stochastic Control Theory, 2nd Edition. CRC Press, Ch. 3, pp. 151–204.

Limebeer, D. J. N., Sharp, R. S., Oct 2006. Bicycles, Motorcycles, and Models. IEEE Control Systems 26 (5), 34–61. https://doi.org/10.1109/MCS.2006.1700044

Meijaard, J., Papadopoulos, J. M., Ruina, A., Schwab, A., 2007. Linearized Dynamics Equations for the Balance and Steer of a Bicycle: a Benchmark and Review. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 463 (2084), 1955–1982. https://doi.org/10.1098/rspa.2007.1857

Michini, B., Sean Torrez, 2007. Autonomous Stability Control of a Moving Bicycle. Tech. rep., Massachusetts Institute of Technology, USA, 77 Massachusetts Ave, Rm 33-336 - Cambridge MA 02139.

Neimark, J. I., N. A. Fufaev, 2004. Translations of Mathematical Monographs. In: Dynamics of Nonholonomic Systems. Vol. 33. American Mathematical Society, Ch. 6, pp. 330–373.

Nenner, U., Linker, R., Gutman, P.-O., 2010. Robust Feedback Stabilization of an Unmanned Motorcycle. Control Engineering Practice 18 (8), 970–978. https://doi.org/10.1016/j.conengprac.2010.04.003

Papadopoulos, J. M., 1987. Bicycle Steering Dynamics and Self-stability: A Summary Report on Work in Progress. Cornell bicycle research project, Cornell University, Ithaca, NY.

Schwab, A., Meijaard, J., Papadopoulos, J., 2005a. Benchmark Results on the Linearized Equations of Motion of an Uncontrolled Bicycle. Journal of Mechanical Science and Technology 19 (1), 292–304. https://doi.org/10.1007/BF02916147

Schwab, A. L., J. P. Meijaard, Papadopoulos, J. M., Aug 2005b. A Multibody Dynamics Benchmark on the Equations of Motion of an Uncontrolled Bicycle. In: Proceedings of the Fifth EUROMECH Nonlinear Dynamics Conference. pp. 511–521.

Schwab, A. L., Meijaard, J. P., May 2013. A Review on Bicycle Dynamics and Rider Control. Vehicle System Dynamics 51 (7), 1059–1090. https://doi.org/10.1080/00423114.2013.793365

Schwab, A. L., Meijaard, J. P., Kooijman, J. D. G., Aug 2012. Lateral Dynamics of a Bicycle with a Passive Rider Model: Stability and Controllability. Vehicle System Dynamics 50 (8), 1209–1224. https://doi.org/10.1080/00423114.2011.610898

Srivastava, S., Pandit, V., 2016. A PI/PID Controller for Time Delay Systems with Desired Closed Loop Time Response and Guaranteed Gain and Phase Margins. Journal of Process Control 37, 70–77. https://doi.org/10.1016/j.jprocont.2015.11.001

Åström, K. J., Hägglund, T., 1995. PID Controllers: Theory, Design, and Tuning, 2nd Edition. ISA, Ch. 3, pp. 80–92.

Åström, K. J., Klein, R. E., Lennartsson, A., Aug 2005. Bicycle Dynamics and Control: Adapted Bicycles for Education and Research. IEEE Control Systems 25 (4), 26–47. https://doi.org/10.1109/MCS.2005.1499389

Su, Y. X., Zheng, C. H., Dong Sun, Duan, B. Y., Aug 2005. A Simple Nonlinear Velocity Estimator for High-Performance Motion Control. IEEE Transactions on Industrial Electronics 52 (4), 1161–1169. https://doi.org/10.1109/TIE.2005.851598

Sun, B., Zhiqiang Gao, Oct 2005. A DSP-based Active Disturbance Rejection Control Design for a 1-Kw H-bridge DC-DC Power Converter. IEEE Transactions on Industrial Electronics 52 (5), 1271–1277. https://doi.org/10.1109/TIE.2005.855679

Tanelli, M., Schiavo, F., Savaresi, S. M., Ferretti, G., Oct 2006. Object-Oriented Multibody Motorcycle Modelling for Control Systems Prototyping. In: IEEE International Conference on Control Applications. pp. 2695–2700.

Whipple, F., 1899. The Stability of the Motion of a Bicycle. Quart. J. Pure Appl. Math. 30 (120), 312–348.

Yuanyuan, F., Runjia, D., Yuping, X., 2017. Steering Angle Balance Control Method for Rider-Less Bicycle Based on ADAMS. Springer Singapore, Singapore, Ch. 1, pp. 15–31.

Abstract Views

439
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. A robust two-stage active disturbance rejection control for the stabilization of a riderless bicycle
Mauro Baquero-Suárez, John Cortés-Romero, Jaime Arcos-Legarda, Horacio Coral-Enriquez
Multibody System Dynamics  año: 2018  
doi: 10.1007/s11044-018-9614-y



Esta revista se publica bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional

Universitat Politècnica de València

e-ISSN: 1697-7920     ISSN: 1697-7912