Mejora de la Potencia Obtenida en Plantas de Generación Undimotriz basadas en Columna de Agua Oscilante

Jon Lekube, Aitor J. Garrido, Izaskun Garrido, Erlantz Otaola

Resumen

Las centrales de aprovechamiento de la energía proveniente de las olas, y particularmente los dispositivos de columna de agua oscilante, resultan una alternativa factible para reducir la dependencia de los combustibles fósiles y frenar el creciente problema del calentamiento global. Así, los nuevos esquemas de control pueden jugar un papel importante a la hora de aportar mejoras de rendimiento y competir de igual a igual desde un punto de vista comercial con las fuentes de energía tradicionales. En este sentido, el presente artículo propone un nuevo método de control basado en el seguimiento de la curva de máxima potencia, mediante el establecimiento de los valores óptimos de los coeficientes de flujo y de par que permiten maximizar la potencia generada en cada instante. El esquema de control ha sido implementado sobre un modelo completo desde la ola hasta la red de potencia a fin de demostrar la viabilidad del método propuesto y la bondad de sus resultados.

Palabras clave

Sistemas de energía renovable; plantas de generación undimotriz; columna de agua oscilante; control de potencia; generadores de inducción

Texto completo:

PDF

Referencias

Alberdi, M., Amundarain, M., Garrido, A.J., Garrido, I., Casquero, O., De la Sen, M., 2011. Complementary control of oscillating water column-based wave energy conversion plants to improve the instantaneous power output. IEEE Transactions on Energy Conversion 26, 1021–1032. https://doi.org/10.1109/TEC.2011.2167332

Amon, A., Brekken, K.A., Schacher, A., 2012. Maximum power point tracking for ocean wave energy conversion. IEEE Transactions on Industry Applications 48, 1079–1086. https://doi.org/10.1109/TIA.2012.2190255

Amundarain, M., Alberdi, M., Garrido, A.J., Garrido, I., 2009. Neural control of the Wells turbine-generator module. Proceedings of the IEEE Conference on Decision and Control, 7315–7320.

Amundarain, M., Alberdi, M., Garrido, A.J., Garrido, I., 2011. Modeling and Simulation of Wave Energy Generation Plants: Output Power Control. IEEE Transactions on Industrial Electronics 58, 105–117. https://doi.org/10.1109/TIE.2010.2047827

Bailey, H., Robertson, B.R.D., Buckham, B.J., 2016. Wave-to-wire simulation of a floating oscillating water column wave energy converter. Ocean Engineering 125, 248–260. https://doi.org/10.1016/j.oceaneng.2016.08.017

Correia da Fonseca, F.X., Gomes, R.P.F., Henriques, J.C.C., Gato, L.M.C., Falcao, A.F.O., 2016. Model testing of an oscillating water column spar-buoy wave energy converter isolated and in array: Motions and mooring forces. Energy 112, 1207–1218. https://doi.org/10.1016/j.energy.2016.07.007

Cui, Y., Hyun, B., 2016. Numerical study on Wells turbine with penetrating blade tip treatments for wave energy conversion. International Journal of Naval Architecture and Ocean Engineering 8, 456–465. https://doi.org/10.1016/j.ijnaoe.2016.05.009

Delmonte, N., Barater, D., Giuliani, F., Cova, P., Buticchi, G., 2016. Review of oscillating wáter column converters. IEEE Transactions on Industry Applications 52, 1698–1710.

Falcao, A.F.D.O., 2002. Control of an oscillating-water-column wave power plant for máximum energy production. Applied Ocean Research 24, 73–82. https://doi.org/10.1016/S0141-1187(02)00021-4

Garcia, E., Correcher, A., Quiles, E., Morant, F., 2016. Recursos y sistemas energéticos renovables de entorno marino y sus requerimientos de control. Revista Iberoamericana de Automática e Informática industrial 13, 141–161. https://doi.org/10.1016/j.riai.2016.03.002

Garrido, A.J., Garrido, I., Alberdi, M., Amundarain, M., Barambones, O., Romero, J.A., 2013. Robust control of oscillating water column (OWC) devices: power generation improvement. Proceedings of the OCEANS–San Diego, 1–4.

Garrido, I., Garrido, A.J., Alberdi, M., Amundarain, M., Barambones, O., 2013. Performance of an ocean energy conversion system with DFIG sensorless control. Mathematical Problems in Engineering 2013. https://doi.org/10.1155/2013/260514

Garrido, I., Garrido, A.J., Sevillano, M.G., Romero, J.A., 2012. Robust sliding mode control for tokamaks. Mathematical Problems in Engineering 2012. https://doi.org/10.1155/2012/341405

Garrido, A.J., Garrido, I., Amundarain, M., Alberdi, M., De la Sen, M., 2012. Sliding-mode control of wave power generation plants. IEEE Transactions on Industry Applications 48, 2372–2381. https://doi.org/10.1109/TIA.2012.2227096

Garrido, A.J., Otaola, E., Garrido, I., Lekube, J., Maseda, F.J., Liria, P., Mader, J., 2015. Mathematical modeling of oscillating water columns wave-structure interaction in ocean energy plants. Mathematical Problems in Engineering 2015. https://doi.org/10.1155/2015/727982

Lekube, J., Garrido, A.J., Garrido, I., 2017. Rotational speed optimization in oscillating water column wave power plants based on maximum power point tracking. IEEE Transactions on Automation Science and Engineering 14, 681–691. https://doi.org/10.1109/TASE.2016.2596579

Le Roux, J.P., 2008. An extension of the Airy theory for linear waves into shallow water. Coastal Engineering 55, 295–301. https://doi.org/10.1016/j.coastaleng.2007.11.003

López, A., Somolinos, J.A., Nú-ez, L.R., 2014. Modelado energético de convertidores primarios para el aprovechamiento de las energías renovables marinas. Revista Iberoamericana de Automática e Informática Industrial 11, 224–235. https://doi.org/10.1016/j.riai.2014.02.005

Marei, M.I., Mokhtar, M., El-Sattar, A.A., 2015. MPPT strategy based on speed control for ASW-based wave energy conversion system. Renewable Energy 83, 305–317. https://doi.org/10.1016/j.renene.2015.04.039

Murakami, T., Imai, Y., Nagata, S., Takao, M., Setoguchi, T., 2016. Experimental research on primary and secondary conversion efficiencies in an oscillating water column-type wave energy converter. Sustainability 8, 756–766. https://doi.org/10.3390/su8080756

Murari, A.L.L.F., Sguarezi Filho, A.J., Torrico Altuna, J.A., Jacomini, R.V., 2016. Una introducción al ajuste de parámetros de controladores PI utilizados en el control del generador de inducción con rotor bobinado. Revista Iberoamericana de Automática e Informatica Industrial 13, 15–21. https://doi.org/10.1016/j.riai.2015.11.001

M'zoughi, F., Bouallègue, S., Ayadi, M., 2015. Modeling and SIL Simulation of an oscillating water column for ocean energy conversion. International Renewable Energy Congress (IREC). https://doi.org/10.1109/IREC.2015.7110880

Rusu, E., Onea, F., 2016. Estimation of the wave energy conversion efficiency in the Atlantic Ocean close to the European islands. Renewable Energy 85, 687–703. https://doi.org/10.1016/j.renene.2015.07.042

Rusu, E., Onea, F., 2015. Assessment of the performances of various wave energy converters along the European continental coasts. Energy 82, 889–904. https://doi.org/10.1016/j.energy.2015.01.099

Sameti, M., Farahi, E., 2014. Output power for an oscillating water column wave energy conversion device. Ocean and Environmental Fluid Research 1, 27–34.

Sevillano, M.G., Garrido, I., Garrido, A.J., 2011. Control-oriented automatic system for transport analysis (ASTRA)-Matlab integration for Tokamaks. Energy 36, 2812–2819. https://doi.org/10.1016/j.energy.2011.02.022

Torre-Enciso, Y., Marqués, J., López de Aguileta, L.I., 2010. Mutriku. Lessons learnt. 3rd International Conference on Ocean Energy.

Uihlein, A., Magagna, D., 2016. Wave and tidal current energy – A review of the current state of research beyond technology. Renewable and Sustainable Energy Reviews 58, 1070–1081. https://doi.org/10.1016/j.rser.2015.12.284

Veigas, M., López, M., Romillo, P., Carballo, R., Castro, A., Iglesias, G., 2015. A proposed wave farm on the Galician coast. Energy Conversion and Management 99, 102–111. https://doi.org/10.1016/j.enconman.2015.04.033

Abstract Views

225
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional

Universitat Politècnica de València

e-ISSN: 1697-7920     ISSN: 1697-7912