Estimación Eficiente de Parámetros y Control en Base a un Sistema de Guía LOS Modificado de un Vehículo Subacuático

Elías Revestido Herrero, Francisco J. Velasco, Luis M. Vega, Francisco J. Lastra

Resumen

En este trabajo, se propone una metodología para la mejora de la eficiencia en la estimación de parámetros de un modelo de maniobra no lineal de un vehículo subacuático no tripulado con forma de torpedo. Para este cometido, se dispone de datos de diferentes ensayos, llevados a cabo con el citado vehículo en las instalaciones del Canal de Experiencias Hidrodinámicas del Pardo, Madrid. En la metodología propuesta, se tiene en cuenta los siguientes aspectos para mejorar la eficiencia en la estimación de los parámetros: selección del periodo de muestreo, suavizado de los datos adquiridos en los ensayos considerando un compromiso entre varianza y sesgo del filtro suavizador a aplicar, análisis del modelo de regresión lineal clásico planteado en cada ensayo, desde el punto de vista estadístico para la estimación de los parámetros. Las mejora de la eficiencia se verifica mediante métodos gráficos y estadísticos. Además, se propone una modificación del método line-of-sight (LOS) convencional que proporciona resultados satisfactorios en presencia de corrientes oceánicas mediante la realización de un procedimiento sencillo.


Palabras clave

Estimación de parámetros; mínimos cuadrados ordinarios; mínimos cuadrados generales; modelo de maniobra no lineal; LOS

Texto completo:

PDF

Referencias

Aguiar, A., Pascoal, A., Oct 1997. Modeling and control of an autonomous underwater shuttle for the transport of benthic laboratories. In: OCEANS '97. MTS/IEEE Conference Proceedings. Vol. 2. pp. 888–895. https://doi.org/10.1109/OCEANS.1997.624110

Alessandri, A., Caccia, M., Indiveri, G., Veruggio, G., Sep 1998. Application of ls and ekf techniques to the identification of underwater vehicles. In: Proceedings of the 1998 IEEE International Conference on Control Applications (Cat. No.98CH36104). Vol. 2. pp. 1084–1088. https://doi.org/10.1109/CCA.1998.721624

Caccia, M., Indiveri, G., Veruggio, G., April 2000. Modeling and identification of open-frame variable configuration unmanned underwater vehicles. IEEE Journal of Oceanic Engineering 25 (2), 227–240. https://doi.org/10.1109/48.838986

Caharija,W., Pettersen, K. Y., Gravdahl, J. T., B?rhaug, E., June 2012a. Integral los guidance for horizontal path following of underactuated autonomous underwater vehicles in the presence of vertical ocean currents. In: 2012 American Control Conference (ACC). pp. 5427–5434. https://doi.org/10.1109/ACC.2012.6315607

Caharija, W., Pettersen, K. Y., Gravdahl, J. T., Børhaug, E., Dec 2012b. Path following of underactuated autonomous underwater vehicles in the presence of ocean currents. In: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC). pp. 528–535. https://doi.org/10.1109/CDC.2012.6427007

Durbin, J., Watson, G. S., 1950. Testing for serial correlation in least squares regression. i. Biometrika 37, 409–428.

Fossen, T., 2002. Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics.

Fossen, T. I., 1994. Guidance and Control of Ocean Marine Vehicles. John Wiley and Sons Ltd.

Fossen, T. I., 2012. Handbook of Marine Craft Hydrodynamics and Motion Control.

Fossen, T. I., Perez, T., Dec 2009. Kalman filtering for positioning and heading control of ships and o shore rigs. IEEE Control Systems 29 (6), 32–46. https://doi.org/10.1109/MCS.2009.934408

Gibson, S., McCarter, B., Stilwell, D., Neu, W., 2015. A comparison of hydrodynamic damping models using least-squares and adaptive identifier methods for autonomous underwater vehicles. Piscataway, NJ, USA, pp. 178– 84. https://doi.org/10.23919/OCEANS.2015.7401981

Guo, J., Chiu, F.-C., 2001. Maneuverability of a flat-streamlined underwater vehicle. In: Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on. Vol. 1. pp. 897–902 vol.1. https://doi.org/10.1109/ROBOT.2001.932664

Healey, A. J., Lienard, D., Jul 1993. Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE Journal of Oceanic Engineering 18 (3), 327–339. https://doi.org/10.1109/JOE.1993.236372

Hegrenaes, O., Hallingstad, O., Jalving, B., April 2007. Comparison of mathematical models for the hugin 4500 auv based on experimental data. In: 2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies. pp. 558–567. https://doi.org/10.1109/UT.2007.370776

Klein, V., Morelli, E. A., 2006. Aircraft System Identification Theory and Practice. AIAA Education Series. https://doi.org/10.2514/4.861505

Lewis, E. V., 1989. Principles of Naval Arquitecture. The Society of Naval Architects and Marine Engineers

Ljung, L., 1987. System identification: theory for the user.

Mahfouz, A. B., 2004. Identification of the nonlinear ship rolling motion equation using the measured response at sea. Ocean Engineering 31 (17-18), 2139 – 2156. https://doi.org/10.1016/j.oceaneng.2004.06.001

Miskovic, N., Vukic, Z., 2011. Fast in-field identification of unmanned marine vehicles. Journal of Field Robotics 1, 101–120. https://doi.org/10.1002/rob.20374

Myers, R. H., 1981. Classical and Modern Regression with Applications. Wiley. Oltmann, P., 2003. Identification of hydrodynamic damping derivatives a pragmatic approach. In: MARSIN?03.

Perez, T., Fossen, T., Spet 2006. Time-domain models of marine surface vessels based on seakeeping computations. In: Proc. 7th IFAC Conference on Manoeuvring and Control of Marine Craft MCMC. Lisbon, Portugal.

Pettersen, K. Y., Lefeber, E., 2001. Way-point tracking control of ships. In: Decision and Control, 2001. Proceedings of the 40th IEEE Conference on. Vol. 1. pp. 940–945 vol.1. https://doi.org/10.1109/.2001.980230

Phillips, A., Furlong, M., Turnock, S., September 2007. Virtual planar motion mechanism tests of the autonomous underwater vehicle autosub. URL: http://eprints.soton.ac.uk/48939/

Refsnes, J., Sorensen, A., Pettersen, K., 2008. Model-based output feedback control of slender-body underactuated auvs: theory and experiments. IEEE Transactions on Control Systems Technology 16 (5), 930 – 46. https://doi.org/10.1109/TCST.2007.916347

Revestido Herrero, E., Velasco, F. J., 2012. Two-step identification of non-linear manoeuvring models of marine vessels. Ocean Engineering 53, 72 – 82. https://doi.org/10.1016/j.oceaneng.2012.07.010

Riola, J., 2011. La política de i+d en defensa: Metas y retos tecnológicos. En las tecnologías de doble uso: La investigación y el desarrollo al servicio de la sociedad civil y militar. In: Centro Universitario de la Defensa (CUD) de San Javier. pp. 13–22.

Shields, D., Hodder, S., 1982. Identification of ship dynamics - a comparison of current techniques. Systems Science 8 (2-3), 103 – 113.

Smallwood, D. A., Whitcomb, L. L., July 2003. Adaptive identification of dynamically positioned underwater robotic vehicles. IEEE Transactions on Control Systems Technology 11 (4), 505–515. https://doi.org/10.1109/TCST.2003.813377

Suleiman, B. M., 2000. Identification of finite-degree-of-freedom models for ship motions. Tech. rep., Faculty of the Virginia Polytechnic Institute and State University.

Tiano, A., 2004. Comparison of non linear identification methods for underwater vehicles. In: First International Symposium on Control, Communications and Signal Processing, 2004. pp. 549–552. https://doi.org/10.1109/ISCCSP.2004.1296439

Velasco, F. J., Herrero, E. R., L´opez, E., Moyano, E., April 2013. Identification for a heading autopilot of an autonomous in-scale fast ferry. IEEE Journal of Oceanic Engineering 38 (2), 263–274. https://doi.org/10.1109/JOE.2012.2227175

Vervoort, J., 2009. Modeling and control of an unmanned underwater vehicle. Ph.D. thesis, University of Canterbury.

Wang, G. C. S., 2003. Regression Analysis: Modeling & Forecasting. Graceway Publishing Company.

Wasserman, L., 2006. All of Nonparametric Statistics.

Yildiz, O., Yilmaz, A., Gokalp, B., 2009. State-of-the-art system solutions for unmanned underwater vehicles. Radioengineering, 590600.

Yoon, H. K., Rhee, K. P., 2003. Identification of hydrodynamic coefficients in ship maneuvering equations of motion by estimation-before-modeling technique. Ocean Engineering 30 (18), 2379 – 2404. https://doi.org/10.1016/S0029-8018(03)00106-9

Yoon, H. K., Son, N. S., Lee, G. J., 2007. Estimation of the roll hydrodynamic moment model of a ship by using the system identification method and the free running model test. IEEE Journal of Oceanic Engineering 32 (4), 798 –806. https://doi.org/10.1109/JOE.2007.909840

Abstract Views

187
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional

Universitat Politècnica de València

e-ISSN: 1697-7920     ISSN: 1697-7912