Dispositivo Robótico Multifuncional para la Rehabilitación de las Extremidades Superiores

Aitziber Mancisidor, Asier Zubizarreta, Itziar Cabanes, Pablo Bengoa, Je Hyung Jung

Resumen

En este trabajo se presenta un dispositivo de rehabilitación innovador por su flexibilidad y eficiencia denominado Universal Haptic Pantograph (UHP). Este robot, gracias a su estructura multi-configurable permite la rehabilitación del miembro superior con un único dispositivo. Además, se ha diseñado con la habilidad de realizar diferentes tareas asistivas y resistivas, pudiendo así adaptarse al estado de recuperación del paciente. Finalmente, el software Telereha genera un entorno de realidad virtual que facilita la ejecución del ejercicio y aumenta la motivación del paciente. El sistema de control del robot se ha implementado entiempo real con el fin de garantizar la correcta ejecución de las tareas de rehabilitación. Usando este sistema, se han realizado diferentes ensayos experimentales.  Los resultados demuestran que el robot de rehabilitación UHP funciona  correctamente  con diferentes tareas de rehabilitación, realizando movimientos suaves y seguros que garantizan la seguridad del usuario.


Palabras clave

Rehabilitación de las extremidades superiores; Robots de rehabilitación; Tareas asistivas; Tareas resistivas; Control de impedancia: Software de rehabilitación; Implementación; Validación experimental

Texto completo:

PDF

Referencias

Amini, H., Dabbagh, V., Rezaei, S. M., Zareinejad, M., Mardi, N. A., Sarhan, A. A. D., 2015. Robust control-based linear bilateral teleoperation system without force sensor. Journal of the Brazilian Society of Mechanical Sciences and Engineering 37 (2), 579–587. https://doi.org/10.1007/s40430-014-0207-2

Anam, K., Al-Jumaily, A. A., 2012. Active Exoskeleton Control Systems: State of the Art. International Symposium on Robotics and Intelligent Sensors 41, 988–994. https://doi.org/10.1016/j.proeng.2012.07.273

Babaiasl, M., Mahdioun, S. H., Jaryani, P., Yazdani, M., 2015. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Disability and Rehabilitation: Assistive Technology, 1–18. https://doi.org/10.3109/17483107.2014.1002539

Bai, J., Song, A., Xu, B., Nie, J., Li, H., 2017. A Novel Human-Robot Cooperative Method for Upper Extremity Rehabilitation. International Journal of Social Robotics, 1–11. https://doi.org/10.1007/s12369-016-0393-4

Basteris, A., Nijenhuis, S. M., Stienen, A. H., Buurke, J. H., Prange, G. B., Amirabdollahian, F., 2014. Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. Journal of neuroengineering and rehabilitation 11 (1), 111–125. https://doi.org/10.1186/1743-0003-11-111

Brackenridge, J., V. Bradnam, L., Lennon, S., J. Costi, J., A. Hobbs, D., 2016. A Review of Rehabilitation Devices to Promote Upper Limb Function Following Stroke. Neuroscience and Biomedical Engineering 4 (1), 25–42. https://doi.org/10.2174/2213385204666160303220102

Byl, N. N., Abrams, G. M., Pitsch, E., Fedulow, I., Kim, H., Simkins, M., Nagarajan, S., Rosen, J., 2013. Chronic stroke survivors achieve comparable outcomes following virtual task specific repetitive training guided by a wearable robotic orthosis (UL-EXO7) and actual task specific repetitive training guided by a physical therapist. Journal of Hand Therapy 26 (4), 343–352. https://doi.org/10.1016/j.jht.2013.06.001

Campolo, D., Widjaja, F., Klein Hubert, J., 2015. An apparatus for upper body movement. US 2015/03027/7 A1.

Cloud, W, 1965. Man amplifiers: Machines that let you carry. Popular Science 187 (5), 70–73.

Crocher, V., Sahbani, A., Robertson, J., Roby-Brami, A., Morel, G., 2012. Constraining upper limb synergies of hemiparetic patients using a robotic exoskeleton in the perspective of neuro-rehabilitation. Neural Systems and Rehabilitation Engineering 20 (3), 247–257. https://doi.org/10.1109/TNSRE.2012.2190522

Emken, J. L., Benitez, R., Reinkensmeyer, D. J., 2007. Human-robot cooperative movement training: Learning a novel sensory motor transformation during walking with robotic assistance-as-needed. Journal of Neuro Engineering and Rehabilitation 4 (1:8), 1–16. https://doi.org/10.1186/1743-0003-4-8

Etedali, S., Talebi, H. A., Mohammadi, A. D., 2015. A robust force observer for robot manipulators subjected to external disturbance. International Conference on Robotics and Mechatronics, 539–544. https://doi.org/10.1109/ICRoM.2015.7367841

Furusho, J., Kikuchi, T., Oda, K., Ohyama, Y., Morita, T., Shichi, N., Jin, Y., Inoue, A., 2007. A 6-DOF rehabilitation support system for upper limbs including wrists robotherapist with physical therapy. International Conference on Rehabilitation Robotics, 304–309. https://doi.org/10.1109/ICORR.2007.4428442

Hogan, N., 1985. Impedance Control: An Approach to Manipulation. Journal of Dynamic Systems, Measurement, and Control 107 (1). https://doi.org/10.1115/1.3140702

Hogan, N., Krebs, H., Charnnarong, J., Srikrishna, P., Sharon, A., 1992. MITMANUS: a workstation for manual therapy and training. I. International Workshop on Robot and Human Communication, 161–165. https://doi.org/10.1109/ROMAN.1992.253895

Huang, J., Tu, X., He, J., 2016. Design and Evaluation of the RUPERT Wearable Upper Extremity Exoskeleton Robot for Clinical and In-Home Therapies. Systems, Man, and Cybernetics: Systems 46 (7), 926–935. https://doi.org/10.1109/TSMC.2015.2497205

Jarrassé, N., Proietti, T., Crocher, V., Robertson, J., Sahbani, A., Morel, G., Roby-Brami, A., 2014. Robotic Exoskeletons: A Perspective for the Rehabilitation of Arm Coordination in Stroke Patients. Frontiers in Human Neuroscience 8 (947), 1–13. https://doi.org/10.3389/fnhum.2014.00947

Kahn, L. E., Lum, P. S., Rymer, W. Z., Reinkensmeyer, D. J., 2006. Robot-assisted movement training for the stroke-impaired arm: Does it matter what the robot does? Journal of rehabilitation research and development 43 (5), 619–630. https://doi.org/10.1682/JRRD.2005.03.0056

Lledó, L. D., Díez, J. A., Bertomeu-Motos, A., Ezquerro, S., Badesa, F. J., Sabater-Navarro, J. M., García-Aracil, N., aug 2016. A Comparative Analysis of 2D and 3D Tasks for Virtual Reality Therapies Based on Robotic-Assisted Neurorehabilitation for Post-stroke Patients. Frontiers in Aging Neuroscience 8, 1–16. https://doi.org/10.3389/fnagi.2016.00205

Lum, P. S., Burgar, C. G., Van der Loos, M., Shor, P. C., Majmundar, M., Yap, R., 2006. MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study. Journal of rehabilitation research and development 43 (5), 631–642. https://doi.org/10.1682/JRRD.2005.02.0044

Mancisidor, A., Zubizarreta, A., Cabanes, I., Bengoa, P., Jung, J. H., (2017). A Comprehensive Training Mode for Robot-Mediated Upper Limb Rehabilitation. Converging clinical & engineering research on Neurorehabilitation II 15, 1169–1173. https://doi.org/10.1007/978-3-319-46669-9_190

Mancisidor, A., Zubizarreta, A., Cabanes, I., Bengoa, P., Jung, J. H., 2017b. Kinematical and dynamical modeling of a multipurpose upper limbs rehabilitation robot. Robotics and Computer-Integrated Manufacturing 49, 374–387. https://doi.org/10.1016/j.rcim.2017.08.013

Mancisidor, A., Zubizarreta, A., Cabanes, I., Bengoa, P., Sesar, I., 2016. Modelado cinemático y dinámico del robot UHP en el modo de rehabilitación Wrist. Jornadas de Automática, 35–42.

Mao, Y., Jin, X., Dutta, G. G., Scholz, J. P., Agrawal, S. K., 2014. Human Movement Training with a Cable Driven ARm EXoskeleton (CAREX). Neural systems and rehabilitation engineering, Engineering in Medicine and Biology Society 4320 (1), 1–9. https://doi.org/10.1109/TNSRE.2014.2329018

Marchal-Crespo, L., Reinkensmeyer, D. J., 2009. Review of control strategies for robotic movement training after neurologic injury. Journal of neuroengineering and rehabilitation 6 (20), 1–15. https://doi.org/10.1186/1743-0003-6-20

Matjacic, Z., Imre Cikajlo, Oblak, J., 2011. Universal Haptic Drive System. US Patent 2011/02 0264018.

Mostafavi, S. M., Dukelow, S. P., Scott, S. H., Mousavi, P., 2014. Hierarchical Task Ordering for Time Reduction on KINARM Assessment Protocol. International Conference of the Engineering in Medicine and Biology Society, 2517–2520. https://doi.org/10.1109/EMBC.2014.6944134

Norouzi-Gheidari, N., Archambault, P. S., Fung, J., 2012. Effects of robotassisted therapy on stroke rehabilitation in upper limbs: Systematic review and meta-analysis of the literature. Journal of Rehabilitation Research and Development 49 (4), 479–495. https://doi.org/10.1682/JRRD.2010.10.0210

Oblak, J., Cikajlo, I., 2010. Universal Haptic Drive : A Robot for Arm and Wrist Rehabilitation. Neural systems and rehabilitation engineering 18 (3), 293–302.

Ochoa Luna, C., Rahman, M. H., Saad, M., Archambault, P., Zhu, W.-H., 2016. Virtual decomposition control of an exoskeleton robot arm. Robotica 34 (07), 1587–1609. https://doi.org/10.1017/S026357471400246X

Otten, A., Voort, C., Stienen, A., Aarts, R., van Asseldonk, E., van der Kooij, H., 2015. LIMPACT:A Hydraulically Powered Self-Aligning Upper Limb Exoskeleton. Mechatronics, 1–14.

https://doi.org/10.1109/TMECH.2014.2375272

Patton, J. L., Stoykov, M. E., Kovic, M., Mussa-Ivaldi, F. a., 2006. Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Experimental Brain Research 168 (3), 368–383. https://doi.org/10.1007/s00221-005-0097-8

Pehlivan, A. U., Lee, S., O'Malley, M. K., 2012. Mechanical design of RiceWrist-S: A forearm-wrist exoskeleton for stroke and spinal cord injury rehabilitation. Biomedical Robotics and Biomechatronics, 1573–1578. https://doi.org/10.1109/BioRob.2012.6290912

Perry, J. C., Oblak, J., Jung, J. H., Cikajlo, I., Veneman, J. F., Goljar, N., Bizoviar, N., Matjai, Z., Keller, T., 2011. Variable structure pantograph mechanism with spring suspension system for comprehensive upper-limb haptic movement training. The Journal of Rehabilitation Research and Development 48 (4), 317–334. https://doi.org/10.1682/JRRD.2010.03.0043

Pignolo, L., Dolce, G., Basta, G., Lucca, L. F., Serra, S., Sannita, W. G., 2012. Upper limb rehabilitation after stroke: ARAMIS a robo-mechatronic innovative approach and prototype. International Conference on Biomedical Robotics and Biomechatronics, 1410–1414. https://doi.org/10.1109/BioRob.2012.6290868

Proietti, T., Crocher, V., Roby-Brami, A., Jarrasse, N., 2016. Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies. Biomedical Engineering, 1–12. https://doi.org/10.1109/RBME.2016.2552201

Rainer Birkenbach, A., Hartlep, A., De, N., Wohlgemuth, R., De, M., Bertram, M., Schwaben, M., Hagn, U., De, P., De, M., Ortmaier, T., 2012. Anthropormorphic medical robot arm with movement restrictions. US 8,160,743 B2.

Rocon, E., Belda-Lois, J. M., Ruiz, A. F., Manto, M., Moreno, J. C., Pons, J. L., 2007. Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression. Neural Systems and Rehabilitation Engineering 15 (1), 367–378. https://doi.org/10.1109/TNSRE.2007.903917

Rodriguez-De-Pablo, C., Perry, J. C., Cavallaro, F. I., Zabaleta, H., Keller, T., 2012. Development of computer games for assessment and training in poststroke arm telerehabilitation. International Conference of the Engineering in Medicine and Biology Society, 4571–4574. https://doi.org/10.1109/EMBC.2012.6346984

Rodríguez-Prunotto, L., Cano-de la Cuerda, R., Cuesta-Gómez, A., Alguacil-Diego, I., Molina-Rueda, F., 2014. Terapia robótica para la rehabilitación del miembro superior en patología neurológica. Rehabilitation 48 (2), 104–128. https://doi.org/10.1016/j.rh.2014.01.001

Sheng, B., Zhang, Y., Meng, W., Deng, C., Xie, S., 2016. Bilateral robots for upper-limb stroke rehabilitation: State of the art and future prospects. Medical Engineering & Physics 38 (7), 587–606.

https://doi.org/10.1016/j.medengphy.2016.04.004

Siciliano, B., Khatib, O., 2008. Springer Handbook of Robotics. Cambridge University Press, 1–1627. https://doi.org/10.1007/978-3-540-30301-5

Song, A., Pan, L., Xu, G., Li, H., 2014. Adaptive motion control of arm rehabilitation robot based on impedance identification. Robotica 33 (09), 1–18. https://doi.org/10.1017/S026357471400099X

Song, Z., Zhang, S., Gao, B., 2013. Implementation of Resistance Training Using an Upper-Limb Exoskeleton Rehabilitation Device for Elbow Joint. Journal of Medical and Biological Engineering 34 (2), 188–196. https://doi.org/10.5405/jmbe.1337

Tomić, T. J. D., Savić, A. M., Vidaković, A. S., Rodić, S. Z., Isaković, M. S., Rodríguez-de Pablo, C., Keller, T., Konstantinović, L. M., 2017. ArmAssist Robotic System versus Matched Conventional Therapy for Poststroke Upper Limb Rehabilitation: A Randomized Clinical Trial. BioMed Research International, 1–7. https://doi.org/10.1155/2017/7659893

Westerveld, A. J., Aalderink, B. J., Hagedoorn,W., Buijze, M., Schouten, A. C., van der Kooij, H., 2014. A Damper Driven Robotic End-Point Manipulator for Functional Rehabilitation Exercises After Stroke. Biomedical Engineering 61 (10), 2646–2654. https://doi.org/10.1109/TBME.2014.2325532

Xie, S., 2016. Advanced Robotics for Medical Rehabilitation. Springer Tracts in Advanced Robotics 108, 1–357. https://doi.org/10.1007/978-3-319-19896-5

Abstract Views

976
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional

Universitat Politècnica de València

e-ISSN: 1697-7920     ISSN: 1697-7912