Evaluación Neurofisiológica del Entrenamiento de la Imaginación Motora con Realidad Virtual en Pacientes Pediátricos con Parálisis Cerebral

M.D. Del Castillo, J.I. Serrano, S. Lerma, I. Martínez, E Rocon

Resumen

Existen diversas evidencias que indican que los déficits motores en los pacientes de parálisis cerebral se asocian con problemas en la planificación motora que, a su vez, apuntan a una mermada capacidad para imaginar movimientos. La imaginación motora se ha revelado como una herramienta efectiva en el aprendizaje y la adquisición de habilidades motoras ya que comparte estructuras neuronales similares con la ejecución motora. En este trabajo se presenta un paradigma basado en un juego de realidad virtual para guiar la actividad mental del paciente que sirve a dos fines: estudiar su capacidad de imaginar movimientos e implicar y motivar al paciente en el entrenamiento de dicha capacidad. El estudio ha involucrado cuatro niños con parálisis cerebral espástica (edad media = 13.25 años, DS = 1.5) con lesión cerebral bilateral. Los resultados obtenidos del análisis de su actividad electroencefalográfica muestran que estos pacientes son capaces de emplear la imaginación motora en una tarea de marcha, indicada por la presencia del fenómeno ERD (Event Related Desynchronization) en zonas corticales motoras, independientemente de su nivel funcional y de los miembros afectados.

Palabras clave

Bioingeniería; Discapacidad; Interfaces; Realidad Virtual; Rehabilitación; Imaginación Motora; EEG

Texto completo:

PDF

Referencias

Bayón, C., Ramírez, O., Serrano, J.I., del Castillo, M.D., Pérez-Somarriba, A., Belda-Lois, J.M., Martínez-Caballero, I., Lerma-Lara, S., Cifuentes, C., Frizera, A., Rocon, E., 2017. Development and evaluation of a novel robotic platform for gait rehabilitation in patients with cerebral palsy: CPWalker. Robotics and Autonomous Systems, 91, 101-114. https://doi.org/10.1016/j.robot.2016.12.015

Blair, E., 2010. Epidemiology of the cerebral palsies. Orthopedic Clinics of North America, 41, 441–55. https://doi.org/10.1016/j.ocl.2010.06.004

Chang, M.C., Kim, D.Y., Park, D.H., 2015. Enhancement of cortical excitability and lower limb motor function in patients with stroke by transcranial direct current stimulation. Brain Stimulation, 8(3), 561-566. https://doi.org/10.1016/j.brs.2015.01.411

Crajé, C., van Elk, M., Beeren, M., van Schie, H.T., Bekkering, H., Steenbergen, B., 2010. Compromised motor planning and motor imagery in right hemiparetic cerebral palsy. Research in Developmental Disabilities, 3186, 1313-1322. https://doi.org/10.1016/j.ridd.2010.07.010

Iosa, M., Zocolillo, L., Montesi, M., Morelli, D., Paolucci, S., Fusco, A., 2014. The brain´s sense of walking: a study on the intertwine between locomotor imagery and internal locomotor models in healthy adults, typically developing children and children with cerebral palsy. Frontiers in Human Neuroscience, 8(359), 1-9. https://doi.org/10.3389/fnhum.2014.00859

Labruyère, R., Gerber, C.N., Birrer‐Brütsch, K., Meyer‐Heim, A., van Hedel, H., 2013. Requirements for and impact of a serious game for neuro‐pediatric robot‐assisted gait training. Research in Developmental Disabilities, 34, 3906-3915. https://doi.org/10.1016/j.ridd.2013.07.031

Laver, K., George, S., Thomas, S., Deutsch, JE., Crotty, M., 2012. Cochrane review: virtual reality for stroke rehabilitation. European Journal of Physical and Rehabilitation Medicine, 48(3), 523-530.

Lerma, S., del Castillo, M.D., Serrano, J.I., Rocon, E., Raya, R., Martínez, I., 2015. EEG control of gait in children with cerebral palsy. Preliminary data for the construction of a brain computer interface. Gait & Posture 42, S42. https://doi.org/10.1016/j.gaitpost.2015.06.082

Meyer-Heim, A., van Hedel, HJA., 2013. Robot-assisted and computer-enhanced therapies for children with cerebral palsy: current state and slinical implementation. Seminars in Pediatric Neurology, 02, 139-145. https://doi.org/10.1016/j.spen.2013.06.006

Mullen, T., Kothe, C., Chi, Y.M., Ojeda, A., Kerth, T., Makeig, S., Cauwenberghs, G., Jung, T.-P., 2013. Real-time modeling and 3d visualization of source dynamics and connectivity using wearable EEG. In Procceedings of IEEE EMBS, 2013, pp. 2184-2187.

Mutsaarts, M., Steenbergen, B., Bekkering, H., 2007. Impaired motor imagery in right hemiparetic cerebral palsy. Experimental Brain Research, 172, 151-162. https://doi.org/10.1007/s00221-005-0327-0

Niazi, I.K., Mrachacz-Kersting, N., Jiang, N., Dremstrup, K., Farina, D., 2012. Peripheral electrical stimulation triggered by self-paced detection of motor intention enhances motor evoked potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(4), 595-604. https://doi.org/10.1109/TNSRE.2012.2194309

Pfurtscheller, G., da Silva, F. H. L. 1999. Event-related EEG/EMG synchronization and desynchronization: basic principles, Clinical Neurophysiology, 110, 1842–1857. https://doi.org/10.1016/S1388-2457(99)00141-8

Ridderinkhof, KR., Brass, M., 2015. How kinesthetic motor Imagery works: a predictive-processing theory of visualization in sports and motor expertise. Journal of Physiology, 109, 35-63. https://doi.org/10.1016/j.jphysparis.2015.02.003

Rose, FD., Brooks, BM., Rizzo A., 2005. Virtual reality in brain damage rehabilitation: review. Cyberpsychology Behavior, 8(3), 241-62. https://doi.org/10.1089/cpb.2005.8.241

Sharma, N., Baron, JC., 2013. Does motor imagery share neural networks with executed movement: a multivariate fMRI analysis. Frontiers in Human Neuroscience, 7:564. https://doi.org/10.3389/fnhum.2013.00564

Shin, Y.K., Lee, D.R., Hwang, H.J., You, S.J., Im, C.H., 2012. A novel EEG-based brain mapping to determine cortical activation patterns in normal children and children with cerebral palsy during motor imagery tasks. Neurorehabilitation, 31(4), 349-355. DOI: 10.3233/NRE-2012-00803

Spruijt, S., ven der Kamp, J., Steenbergen, B., 2015. Current insights in the development of children's motor imagery ability. Research in Developmental Disabilities, 34, 4154-60. https://doi.org/10.1016/j.ridd.2013.08.044

Weiss, P.L., Keshner, EA., Levin, M.F. (eds.), 2014. Virtual Reality for Physical and Motor Rehabilitation, Springer. https://doi.org/10.1007/978-1-4939-0968-1

Winkler, I., Haufe, S., Tangermann, M., 2011. Automatic classification of artifactual ICA-Components for artifact removal in EEG signals. Behavioral and Brain Functions, 7(30), 1-15. https://doi.org/10.1186/1744-9081-7-30

You, S.H., Jang, S.H., Kim, Y.H., Hallett, M., Ahn, S.H., Kwon, Y.H., Kim, J.H, Lee, M.Y., 2005. Virtual reality-induced cortical reorganization and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke, 36(6), 1166-1171. https://doi.org/10.1161/01.STR.0000162715.43417.91

Abstract Views

562
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional

Universitat Politècnica de València

e-ISSN: 1697-7920     ISSN: 1697-7912