Optimización de Parámetros Utilizando los Métodos de Monte Carlo y Algoritmos Evolutivos. Aplicación a un Controlador de Seguimiento de Trayectoria en Sistemas no Lineales

C. Fernández, N. Pantano, S. Godoy, E. Serrano, G. Scaglia

Resumen

En este trabajo se propone una estrategia de control en lazo cerrado para el seguimiento de perfiles óptimos previamente definidos para un bioproceso fed-batch. La mayor ventaja de este enfoque es que las acciones de control se calculan resolviendo un sistema de ecuaciones lineales, sin tener que linealizar el modelo matemático, lo que permite trabajar en cualquier rango. Además, se plantean tres técnicas para la sintonización de los parámetros del controlador diseñado. Primero se propone un método de Monte Carlo, el cual es un método probabilístico. En segundo lugar, se presenta una metodología basada en Algoritmos Genéticos, una técnica evolutiva de optimización. La tercera alternativa es el desarrollo de un Algoritmo Híbrido, diseñado a partir de la combinación de los dos métodos anteriores. En todos los casos, el objetivo es encontrar los parámetros del controlador que minimicen el error total de seguimiento de trayectorias. El desempeño del controlador se evalúa a través de simulaciones en condiciones normales de operación y frente a incertidumbre paramétrica, empleando los parámetros del controlador obtenidos.


Palabras clave

Control en lazo cerrado; sistemas no lineales; control de sistemas multivariables; método de Monte Carlo; Algoritmos Genéticos

Texto completo:

PDF

Referencias

Asadi, E., Da Silva, M. G., Antunes, C. H., Dias, L.,Glicksman, L. 2014. Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application. Energy and Buildings, 81, 444-456. https://doi.org/10.1016/j.enbuild.2014.06.009

Ashoori, A., Moshiri, B., Khaki-Sedigh, A.,Bakhtiari, M. R. 2009. Optimal control of a nonlinear fed-batch fermentation process using model predictive approach. Journal of Process Control, 19, 7, 1162-1173. https://doi.org/10.1016/j.jprocont.2009.03.006

Bayen, T.,Mairet, F. 2013. Minimal time control of fed-batch bioreactor with product inhibition. Bioprocess and Biosystems Engineering, 36, 10, 1485-1496. https://doi.org/10.1007/s00449-013-0911-9

Bogaerts, P.,Coutinho, D. 2014. Robust nonlinear state estimation of bioreactors based on H∞ hybrid observers. Computers & Chemical Engineering, 60, 315-328. https://doi.org/10.1016/j.compchemeng.2013.09.013

Bogaerts, P.,Wouwer, A. V. 2003. Software sensors for bioprocesses. ISA transactions, 42, 4, 547-558. https://doi.org/10.1016/S0019-0578(07)60005-6

Cosenza, B.,Galluzzo, M. 2012. Nonlinear fuzzy control of a fed-batch reactor for penicillin production. Computers & Chemical Engineering, 36, 273-281. https://doi.org/10.1016/j.compchemeng.2011.07.016

Craven, S., Whelan, J.,Glennon, B. 2014. Glucose concentration control of a fed-batch mammalian cell bioprocess using a nonlinear model predictive controller. Journal of Process Control, 24, 4, 344-357. http://dx.doi.org/10.1016/j.jprocont.2014.02.007

Chang, D. M. 2003. The Snowball Effect in Fed‐Batch Bioreactions. Biotechnology progress, 19, 3, 1064-1070. https://doi.org/10.1021/bp025792a

Chung, Y.C., Chien, I.L.,Chang, D.M. 2006. Multiple-model control strategy for a fed-batch high cell-density culture processing. Journal of Process Control, 16, 1, 9-26. https://doi.org/10.1016/j.jprocont.2005.05.003

Daoutidis, P., Zachar, M.,Jogwar, S. S. 2016. Sustainability and process control: A survey and perspective. Journal of Process Control, 44, 184-206. https://doi.org/10.1016/j.jprocont.2016.06.002

Dewasme, L., Fernandes, S., Amribt, Z., Santos, L., Bogaerts, P.,Wouwer, A. V. 2015. State estimation and predictive control of fed-batch cultures of hybridoma cells. Journal of Process Control, 30, 50-57. https://doi.org/10.1016/j.jprocont.2014.12.006

Fernández, M. C., Rómoli, S., Pantano, M. N., Ortiz, O. A., Pati-o, D.,Scaglia, G. J. 2018. A New Approach for Nonlinear Multivariable Fed-Batch Bioprocess Trajectory Tracking Control. Automatic Control and Computer Sciences, 52, 1, 13-24. https://doi.org/10.3103/S0146411618010030

Hassan, L. H., Moghavvemi, M., Almurib, H. A.,Steinmayer, O. 2013. Application of genetic algorithm in optimization of unified power flow controller parameters and its location in the power system network. International Journal of Electrical Power & Energy Systems, 46, 89-97. https://doi.org/10.1016/j.ijepes.2012.10.011

Holland, J. H. 1975. Adaptation in natural and artificial systems. An introductory analysis with application to biology, control, and artificial intelligence. Ann Arbor, MI: University of Michigan Press,

Hulhoven, X., Wouwer, A. V.,Bogaerts, P. 2006. Hybrid extended Luenberger-asymptotic observer for bioprocess state estimation. Chemical Engineering Science, 61, 21, 7151-7160. http://dx.doi.org/10.1016/j.ces.2006.06.018.

Hunag, W.H., Shieh, G. S.,Wang, F.S. 2012. Optimization of fed-batch fermentation using mixture of sugars to produce ethanol. Journal of the Taiwan Institute of Chemical Engineers, 43, 1, 1-8. https://doi.org/10.1016/j.jtice.2011.06.007

Imtiaz, U., Assadzadeh, A., Jamuar, S. S.,Sahu, J. N. 2013. Bioreactor temperature profile controller using inverse neural network (INN) for production of ethanol. Journal of Process Control, 23, 5, 731-742. http://dx.doi.org/10.1016/j.jprocont.2013.03.005

Imtiaz, U., Jamuar, S. S., Sahu, J. N.,Ganesan, P. B. 2014. Bioreactor profile control by a nonlinear auto regressive moving average neuro and two degree of freedom PID controllers. Journal of Process Control, 24, 11, 1761-1777. https://doi.org/10.1016/j.jprocont.2014.09.012

Ismail, M., Moghavvemi, M.,Mahlia, T. 2014. Genetic algorithm based optimization on modeling and design of hybrid renewable energy systems. Energy Conversion and Management, 85, 120-130. https://doi.org/10.1016/j.enconman.2014.05.064

Jin, H., Chen, X., Yang, J., Wu, L.,Wang, L. 2014. Hybrid intelligent control of substrate feeding for industrial fed-batch chlortetracycline fermentation process. ISA transactions, 53, 6, 1822-1837. https://doi.org/10.1016/j.isatra.2014.08.015

Johnson, A. 1987. The control of fed-batch fermentation processes—a survey. Automatica, 23, 6, 691-705. https://doi.org/10.1016/0005-1098(87)90026-4

Lee, J., Lee, S. Y., Park, S.,Middelberg, A. P. J. 1999. Control of fed-batch fermentations. Biotechnology Advances, 17, 1, 29-48. https://doi.org/10.1016/S0734-9750(98)00015-9

Mohanty, B., Panda, S.,Hota, P. 2014. Controller parameters tuning of differential evolution algorithm and its application to load frequency control of multi-source power system. International journal of electrical power & energy systems, 54, 77-85. https://doi.org/10.1016/j.ijepes.2013.06.029

Mohd, N.,Aziz, N. 2015. Control of bioethanol fermentation process: NARX-based MPC (NARX-MPC) versus linear-based MPC (LMPC). CHEMICAL ENGINEERING, 45, Ochoa, S., Wozny, G.,Repke, J.-U. 2010. Plantwide optimizing control of a continuous bioethanol production process. Journal of Process Control, 20, 9, 983-998.

Pachauri, N., Rani, A.,Singh, V. 2017. Bioreactor temperature control using modified fractional order IMC-PID for ethanol production. Chemical Engineering Research and Design, 122, 97-112. https://doi.org/10.1016/j.cherd.2017.03.031

Pantano, M. N., Serrano, M. E., Fernández, M. C., Rossomando, F. G., Ortiz, O. A.,Scaglia, G. J. 2017. Multivariable Control for Tracking Optimal Profiles in a Nonlinear Fed-Batch Bioprocess Integrated with State Estimation. Industrial & Engineering Chemistry Research, 56, 20, 6043-6056. https://doi.org/10.1021/acs.iecr.7b00831

Rajarathinam, K., Gomm, J. B., Yu, D.-L.,Abdelhadi, A. S. 2016. PID controller tuning for a multivariable glass furnace process by genetic algorithm. International Journal of Automation and Computing, 13, 1, 64-72. https://doi.org/10.1007/s11633-015-0910-1

Rani, K. Y.,Rao, V. R. 1999. Control of fermenters–a review. Bioprocess Engineering, 21, 1, 77-88. https://doi.org/10.1007/PL00009066

Renard, F.,Wouwer, A. V. 2008. Robust adaptive control of yeast fed-batch cultures. Computers & Chemical Engineering, 32, 6, 1238-1248. https://doi.org/10.1016/j.compchemeng.2007.05.008

Renard, F., Wouwer, A. V., Valentinotti, S.,Dumur, D. 2006. A practical robust control scheme for yeast fed-batch cultures–an experimental validation. Journal of Process Control, 16, 8, 855-864. https://doi.org/10.1016/j.jprocont.2006.02.003

Rocha, M., Mendes, R., Rocha, O., Rocha, I.,Ferreira, E. C. 2014. Optimization of fed-batch fermentation processes with bio-inspired algorithms. Expert Systems with Applications, 41, 5, 2186-2195. https://doi.org/10.1016/j.eswa.2013.09.017

Rossomando, F. G.,Soria, C. M. 2015a. Design and implementation of adaptive neural PID for non linear dynamics in mobile robots. IEEE Latin America Transactions, 13, 4, 913-918. https://doi.org/10.1109/TLA.2015.7106337

Rossomando, F. G.,Soria, C. M. 2015b. Identification and control of nonlinear dynamics of a mobile robot in discrete time using an adaptive technique based on neural PID. Neural Computing and Applications, 26, 5, 1179-1191. https://doi.org/10.1007/s00521-014-1805-8

Sadatsakkak, S. A., Ahmadi, M. H., Bayat, R., Pourkiaei, S. M.,Feidt, M. 2015. Optimization density power and thermal efficiency of an endoreversible Braysson cycle by using non-dominated sorting genetic algorithm. Energy Conversion and Management, 93, 31-39. https://doi.org/10.1016/j.enconman.2014.12.088

Saint-Donat, J., Bhat, N.,Mcavoy, T. J. 1991. Neural net based model predictive control. International Journal of Control, 54, 6, 1453-1468. https://doi.org/10.1080/00207179108934221

Santos, L. O., Dewasme, L., Coutinho, D.,Wouwer, A. V. 2012. Nonlinear model predictive control of fed-batch cultures of micro-organisms exhibiting overflow metabolism: assessment and robustness. Computers & Chemical Engineering, 39, 143-15. https://doi.org/10.1016/j.compchemeng.2011.12.010

Sarkar, D.,Modak, J. M. 2003. Optimisation of fed-batch bioreactors using genetic algorithms. Chemical Engineering Science, 58, 11, 2283-2296. https://doi.org/10.1016/S0009-2509(03)00095-2

Sarkar, D.,Modak, J. M. 2004. Optimization of fed-batch bioreactors using genetic algorithm: multiple control variables. Computers & Chemical Engineering, 28, 5, 789-798,

https://doi.org/10.1016/j.compchemeng.2004.02.018

Soni, A. S.,Parker, R. S. 2004. Closed-loop control of fed-batch bioreactors: A shrinking-horizon approach. Industrial & engineering chemistry research, 43, 13, 3381-3393. https://doi.org/10.1021/ie030535b

Strang, G. 2006. Linear Algebra and Its applications, USA.

Tempo, R.,Ishii, H. 2007. Monte Carlo and Las Vegas Randomized Algorithms for Systems and Control*: An Introduction. European journal of control, 13, 2, 189-203. https://doi.org/10.3166/ejc.13.189-203

Tholudur, A.,Ramirez, W. F. 1996. Optimization of Fed‐Batch Bioreactors Using Neural Network Parameter Function Models. Biotechnology Progress, 12, 3, 302-309. https://doi.org/10.1021/bp960012h

Troncoso, C.,Suárez, A. 2017. Control del Nivel de Pulpa en un Circuito de Flotación Utilizando una Estrategia de Control Predictivo. Revista Iberoamericana de Automática e Informática Industrial RIAI, 14, 3, 234-245. https://doi.org/10.1016/j.riai.2017.04.003

Vilanova, R., Santín, I.,Pedret, C. 2017. Control y Operación de Estaciones Depuradoras de Aguas Residuales: Modelado y Simulación. Revista Iberoamericana de Automática e Informática Industrial RIAI, 14, 3, 217-233. https://doi.org/10.1016/j.riai.2017.05.004

Vilums, S.,Grigs, O. 2012. Application of functional state modelling approach for yeast Saccharomyces cerevisiae batch fermentation state estimation. 5th International Scientific Conference on Applied Information and Communication Technologies. Proceedings. 300À305.

Vishal, V., Kumar, V., Rana, K., Mishra, P.,Kumar, J. 2014. Online PI controller tuning for a nonlinear plant using genetic algorithm. Computational Intelligence on Power, Energy and Controls with their impact on Humanity (CIPECH), 2014 Innovative Applications of, 2014. IEEE, 143-148. https://doi.org/10.1109/CIPECH.2014.7019051

Wechselberger, P., Seifert, A.,Herwig, C. 2010. PAT method to gather bioprocess parameters in real-time using simple input variables and first principle relationships. Chemical Engineering Science, 65, 21, 5734-5746. https://doi.org/10.1016/j.ces.2010.05.002

Yu, W., Li, B., Jia, H., Zhang, M.,Wang, D. 2015. Application of multi-objective genetic algorithm to optimize energy efficiency and thermal comfort in building design. Energy and Buildings, 88, 135-143. https://doi.org/10.1016/j.enbuild.2014.11.063

Abstract Views

2696
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Surrogate optimization of coupled energy sources in a desalination microgrid based on solar PV and wind energy
Enrique Rosales-Asensio, Ana-Esther Rosales, Antonio Colmenar-Santos
Desalination  vol: 500  primera página: 114882  año: 2021  
doi: 10.1016/j.desal.2020.114882



Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912