Optimización del Espacio de Trabajo de un Robot Deltoide
DOI:
https://doi.org/10.4995/riai.2018.8747Palabras clave:
Robot Deltoide, Diseño, Optimización, Simulación por computadora, Espacio de trabajo, ADEFIDResumen
Los estudios realizados en el robot Delta han reportado inconveniencias con respecto a su limitado espacio de trabajo. Este artículo propone una modificación en la colocación de sus actuadores, convirtiéndose así en lo que se denomina robot Deltoide. Con este cambio, el espacio de trabajo puede aumentar o disminuir considerablemente. De esta manera, se propone una optimización usando algoritmos genéticos para encontrar el mayor espacio de trabajo que el robot puede tener dependiendo de las variables de diseño. Además, se explica e implementa el análisis general de la cinemática directa e inversa del robot Deltoide, en un software creado especialmente para esta aplicación.
Descargas
Citas
Adept, August 2014. Quattro s650h, http://www.adept.com/products/robots/parallel/quattro-s650h /general. https://doi.org/10.1108/ir.2009.04936dad.001
Analytics, I., Nov. 2016. IBM SPSS, http://www.ibm.com/analytics/us/en/technology/spss/.
Ardestani, M. A., Asgari, M., 2012. Modeling and analysis of a novel 3-dof spatial parallel robot. 19th International Conference on Mechatronics and Machine Vision in Practice, Auckland New Zealand, 162–167.
Borchert, G., Battistelli, M., Runge, G., Raatz, A., 2015. Analysis of the mass distribution of a functionally extended delta robot. Robotics and Computer-Integrated Manufacturing 31, 111–120. https://doi.org/10.1016/j.rcim.2014.08.003
Clavel, R., 1985. Device for the movement and positioning of an element in space. US Patent 4,976,582.
Clavel, R., Pham, P., Lorent, B., Le Gall, B., Bouri, M., 2008. New Variants of Delta Robots and Double-Tilt Platform for Assembly. In: Proceedings of Robotic Systems for Assembly. Braunschweig, pp. 237–249.
Courteillie, E., Deblaise, D., Maurine, P., 2009. Design optimization of a deltalike robot through global stiness performance evaluation. IEEE/RSJ International conference on Intelligent Robots and Systems, St. Louis USA, 5159–5166. https://doi.org/10.1109/iros.2009.5353906
Fanuc, August 2014. M3ia, http://www.fanucrobotics.com/cmsmedia/datasheets/m-3ia
González-Palacios, M. A., 2012. Advanced engineering platform for industrial development. The Journal of Applied Research and Technology vol. 10(3), 309–326.
González-Palacios, M. A., 2013. The unified orthogonal architecture of industrial serial manipulators. Robotics and Computer-Integrated Manufacturing 29, 257–271.
Gosselin, C., Angeles, J., Sep 1991. A global performance index for the kinematic optimization of robotic manipulators. Journal of Mechanical Design 113 (3), 220–226. http://dx.doi.org/10.1115/1.2912772
Gutiérrez-Preciado, A., González-Palacios, M. A., Aguilera-Cortés, L. A., aug 2014.Workspace analysis of a delta-like robot using an alternative approach. In: Multibody Mechatronic Systems. Springer International Publishing, pp. 453–463.
Isaksson, M., Nyhof, L., Nahavandi, S., 2015. On the feasibility of utilising gearing to extend the rotational workspace of a class of parallel robots. Robotics and Computer-Integrated Manufacturing 35, 126–136.
Istvan, A., June 2015. http://kvarc.extra.hu/step/motor/emc/emckinematics.html.
Kelaiaia, R., Company, O., Zaatri, A., 2012. Multiobjective optimization of a linear delta parallel robot. Mechanism and Machine Theory 50, 159 – 178. http://dx.doi.org/10.1016/j.mechmachtheory.2011.11.004
Laribi, M. A., Romdhane, L., Zeghoul, S., 2007. Analysis and dimensional synthesis of the delta robot for a prescribed workspace. Mechanism and Machine Theory 42, 859–870.
Merlet, J.-P., 2006. Parallel Robots, 2nd Edition. Springer
Miller, K., 1999. Synthesis of a manipulator of the new uwa robot. Department of Mechanical and Materials Engineering, The University of Western Australia.
Moreno, H. A., Saltarén, R., Carrera, I., Puglisi, L., Aracil, R., 2012. Índices de desempeño de robots manipuladores: una revisión del estado del arte. Revista Iberoamericana de Automática e Informática industrial Vol. 9, Núm. 2. URL: https://polipapers.upv.es/index.php/RIAI/article/view/9606 https://doi.org/10.1016/j.riai.2012.02.005
Pérez-Soto, G. I., Rico, J. M., Cervantes-Sánchez, J. J., López-Custodio, P. C., Gallardo-Mosqueda, L. A., Camarillo-Gómez, K. A., 2014. A new method for the kinematic synthesis of parallel platforms. Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Paper DETC2014-34297.
Robotics, T., April 2014. http://forums.trossenrobotics.com/tutorials/introduction-129/delta-robot-kinematics-3276.
Salisbury, J. K., Craig, J. J., 1982. Articulated hands: Force control and kinematic issues. The International Journal of Robotics Research 1 (1), 4–17. https://doi.org/10.1177/027836498200100102
Stamper, R. E., Tsai, L.-W., , Walsh, G. C., 1997. Optimization of a three dof translational platform for well-conditioned workspace. Proc. of the IEEE International Conference on Robotics and Automation, Albuquerque USA, 3250–3255. https://doi.org/10.1109/robot.1997.606784
Wang, Z., Wang, G., Ji, S., Wan, Y., Yuan, Q., 2007. Optimal design of a linear delta robot for the prescribed cuboid dexterous workspace. Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics, Sanya China, 2183 – 2188. https://doi.org/10.1109/robio.2007.4522508
Zhao, Y., 2013. Dimensional synthesis of a three translational degrees of freedom parallel robot while considering kinematic anisotropic property. Robotics and Computer-Integrated Manufacturing 29, 169–179. https://doi.org/10.1016/j.rcim.2012.05.002
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)