Control de Tracción para un Vehículo Eléctrico basado en Observadores no Lineales

Diego A. Aligia, Guillermo A. Magallán, Cristian H. De Angelo

Resumen

En este trabajo se propone una estrategia de control de tracción para un vehículo eléctrico de cuatro ruedas, basada en observadores no lineales que permiten estimar la fuerza máxima que se puede transferir al suelo. El conocimiento de la fuerza máxima permite realizar un control del deslizamiento de los neumáticos de tracción, evitando que las ruedas patinen aún en superficies de baja adherencia. La estrategia propuesta permite además evitar que se produzca un momento de guiño no deseado en el vehículo cuando las condiciones de suelo a cada lado del mismo son diferentes. Con ello se logra mejorar la eficiencia y el control del vehículo, evitando posibles pérdidas de estabilidad que pueden resultar en riesgos para sus ocupantes. Tanto el observador como el control propuestos son diseñados en base a un modelo dinámico rotacional de la rueda y un modelo de fuerzas de brush. Se presentan resultados de simulación obtenidos  empleando un modelo completo de vehículo sobre la plataforma Simulink/CarSim


Palabras clave

Control de tracción; Condición de suelo; Coeficiente de rozamiento; Modelo de neumático brush; Linealización exacta por realimentación; Observador no lineal de Luenberger

Texto completo:

PDF

Referencias

Baet, G., Charara, A., Dherbomez, G., 2007. An observer of tire–road forcesand friction for active security vehicle systems. IEEE/ASME Transactionson Mechatronics 12 (6), 651–661.

Biagiola, S., Solsona, J., 2006. State estimation in batch processes using a non-linear observer. Mathematical and Computer Modelling 44 (11-12), 1009–1024. https://doi.org/10.1016/j.mcm.2006.03.005

Changsun, A., Huei, P., Tseng, H. E., 2013. Robust estimation of road frictional coefficient. IEEE Transactions on Control Systems Technology 21 (1), 1–13. https://doi.org/10.1109/TCST.2011.2170838

Chankyu, L., Hedrick, K., Kyongsu, Y., 2004. Real-time slip-based estimation of maximum tire-road friction coefficient. IEEE/ASME Trans. on Mechatronics 9 (2), 454–458. https://doi.org/10.1109/TMECH.2004.828622

Choi, M., Oh, J. J., Choi, S. B., 2013. Linearized recursive least squares methods for real-time identification of tire–road friction coefficient. IEEE Transactions on Vehicular Technology 62 (7), 2906–2918. https://doi.org/10.1109/TVT.2013.2260190

Dejun, Y., Sehoon, O., Hori, Y., 2009. A novel traction control for EV based on maximum transmissible torque estimation. IEEE Transactions on Industrial Electronics 56 (6), 2086–2094. https://doi.org/10.1109/TIE.2009.2016507

Delli Colli, V., Tomassi, G., Scarano, M., 2006. Single wheel longitudinal traction control for electric vehicles. IEEE Transactions on Power Electronics21 (3), 799–808. https://doi.org/10.1109/TPEL.2006.872363

Fernández, R., Aracil, R., Armada, M., 2012. Control de tracción en robots móviles con ruedas. Revista Iberoamericana de Automática e Informática Industrial (RIAI) 9 (4), 393–405. https://doi.org/10.1016/j.riai.2012.09.008

Gustafsson, F., 1997. Slip-based tire-road friction estimation. Automatica 33 (6), 1087–1099. https://doi.org/10.1016/S0005-1098(97)00003-4

Hori, Y., Oct 2004. Future vehicle driven by electricity and control-research on four-wheel-motored "UOT electric march II". IEEE Transactions on Indus-trial Electronics 51 (5), 954–962. https://doi.org/10.1109/TIE.2004.834944

Hu, J.-S., Yin, D., Hori, Y., 2011. Fault-tolerant traction control of electric vehicles. Control Engineering Practice 19 (2), 204–213. https://doi.org/10.1016/j.conengprac.2010.11.012

Ivanov, V., Savitski, D., Shyrokau, B., Sept 2015. A survey of traction control and antilock braking systems of full electric vehicles with individually con-trolled electric motors. IEEE Transactions on Vehicular Technology 64 (9), 3878–3896. https://doi.org/10.1109/TVT.2014.2361860

Kuntanapreeda, S., 2014. Traction control of electric vehicles using sliding-mode controller with tractive force observer. International Journal of Vehicular Technology 2014. https://doi.org/10.1155/2014/829097

Li, L., Yang, K., Jia, G., Ran, X., Song, J., Han, Z.-Q., 2015. Comprehensive tire-road friction coefficient estimation based on signal fusion method under complex maneuvering operations. Mechanical Systems and Signal Processing 56, 259–276. https://doi.org/10.1016/j.ymssp.2014.10.006

Loeb, J. S., Guenther, D. A., Chen, H.-H. F., Ellis, J. R., 1990. Lateral stiness, cornering stiness and relaxation length of the pneumatic tire. Tech. rep., SAE Technical Paper.

Magallan, G. A., De Angelo, C. H., Garcia, G. O., 2009. A neighbourhood-electric vehicle development with individual traction on rear wheels. Inter-national Journal of Electric and Hybrid Vehicles 2 (2), 115–136. https://doi.org/10.1504/IJEHV.2009.029037

Magallan, G. A., De Angelo, C. H., Garcia, G. O., 2011. Maximization of the traction forces in a 2wd electric vehicle. IEEE Transactions on Vehicular Technology 60 (2), 369–380. https://doi.org/10.1109/TVT.2010.2091659

Mooryong, C., Oh, J. J., Choi, S. B., 2013. Linearized recursive least squares methods for real-time identification of tire-road friction coefficient. IEEE Transactions on Vehicular Technology 62 (7), 2906–2918. https://doi.org/10.1109/TVT.2013.2260190

Pacejka, H. B., 2005. Tyre and vehicle dynamics, 2nd Edition. Elsevier.

Pacejka, H. B., Sharp, R. S., 1991. Shear force development by pneumatic ty-res in steady state conditions: a review of modelling aspects. Vehicle system dynamics 20 (3-4), 121–175. https://doi.org/10.1080/00423119108968983

Rajamani, R., 2011. Vehicle dynamics and control. Springer.

Rajamani, R., Phanomchoeng, G., Piyabongkarn, D., Lew, J. Y., 2012. Algorithms for real-time estimation of individual wheel tire-road friction coefficients. IEEE/ASME Transactions on Mechatronics 17 (6), 1183–1195. https://doi.org/10.1109/TMECH.2011.2159240

Sanghyun, H., Hedrick, J. K., 2013. Tire-road friction coefficient estimation with vehicle steering. In: 2013 IEEE Intelligent Vehicles Symposium. Pp.1227–1232.

Serrano-Iribarnegaray, L., Martinez-Roman, J., Aug 2007. A unified approach to the very fast torque control methods for DC and AC machines. IEEE Transactions on Industrial Electronics 54 (4), 2047–2056. https://doi.org/10.1109/TIE.2007.895148

Singh, K. B., Taheri, S., 2015. Estimation of tire–road friction coefficient and its application in chassis control systems. Systems Science & Control Engineering 3 (1), 39–61. https://doi.org/10.1080/21642583.2014.985804

Sui, D., Johansen, T. A., 2010. Moving horizon estimation for tire-road friction during braking. In: 2010 IEEE International Conference on Control Applications (CCA). pp. 1379–1384. https://doi.org/10.1109/CCA.2010.5611307

Tesheng, H., 2013a. Direct longitudinal tire force control under simultaneous acceleration/deceleration and turning. In: American Control Conference (ACC), 2013. pp. 2147–2152. https://doi.org/10.1109/ACC.2013.6580153

Tesheng, H., 2013b. Robust estimation and control of tire traction forces. IEEE Transactions on Vehicular Technology 62 (3), 1378–1383. https://doi.org/10.1109/TVT.2012.2230656

Wanki, C., Jangyeol, Y., Seongjin, Y., Bongyeong, K., Kyongsu, Y., 2010.Estimation of tire forces for application to vehicle stability control. IEEE Transactions on Vehicular Technology 59 (2), 638–649 https://doi.org/10.1109/TVT.2009.2034268

Abstract Views

319
Metrics Loading ...

Metrics powered by PLOS ALM




Esta revista se publica bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional

Universitat Politècnica de València

e-ISSN: 1697-7920     ISSN: 1697-7912