GlSch: Planificación de Observaciones en la red de Telescopios GLORIA

Carmen López Casado, Carlos Jesús Pérez del Pulgar Mancebo, Víctor Fernando Muñoz Martínez, Alberto Castro Tirado

Resumen

Este artículo propone el diseño y desarrollo de un planificador para la red de telescopios GLORIA. Esta red, cuyo principal objetivo es acercar los ciudadanos a la astronomía, está formada por 18 telescopios ubicados en cuatro continentes. Parte de la gestión de esta red se lleva a cabo por el planificador, que se encarga de recibir peticiones de observación de usuarios de usuarios y enviárselas a uno de los telescopios de la red. Para esto, necesita un algoritmo que decida el mejor telescopio, evitando ofrecer una petición a un telescopio que finalmente no pueda ejecutarla. Este artículo presenta dos algoritmos de decisión: el primero se basa únicamente en la predicción meteorológica, y el segundo emplea lógica difusa e información de cada telescopio. Ambos algoritmos fueron implantados en la red GLORIA. Los resultados obtenidos, así como una comparativa del rendimiento de ambos se presenta en este artículo. Así mismo, se detalla la arquitectura del planificador basada en una estructura híbrida distribuida-centralizada.

Palabras clave

red; telescopios; algoritmos de planificación; lógica difusa; software

Texto completo:

PDF

Referencias

Andújar Márquez, J., Mateo Sanguino, T., 1 2010. Diseño de Laboratorios Virtuales y/o Remotos. Un Caso Práctico. Revista Iberoamericana de Automática e Informática Industrial RIAI 7 (1), 64–72. DOI:10.1016/S1697-7912(10)70009-1

Arregui, J. P., Tejo, J. A., Linares López, C., Borrajo, D., 2012. Steps towards and operational sensor network planning for space surveillance. In: Proceedings of the SpaceOps. DOI:10.2514/6.2012-1294728

Bakos, G., Gaspar, 2016. Finding and Characterizing a Large and Diverse Population of Transiting Exoplanets with HATSouth in Support of NASA Space Missions. NASA Proposal #16-XRP16-70.

Beskin, G., Bad’in, V., Biryukov, A., et al., 7 2005. FAVOR (FAst Variability Optical Registration) – A Two-telescope Complex for Detection and Investigation of Short Optical Transients. Il Nuovo Cimento, 751–754. DOI:10.1393/ncc/i2005-10146-9

Bigongiari, C., Consortium, C., 2016. The Cherenkov Telescope Array. Nuclear and Particle Physics Proceedings 279, 174–181. DOI:10.1016/j.nuclphysbps.2016.10.025

Boër, M., Klotz, A., Laugier, R., et al., 2017. TAROT: a network for space surveillance and tracking operations. 7th European Conference on Space Debris ESA/ESOC.

Castro-Tirado, A. J., Jelínek, M., Gorosabel, J., et al., 2012. Building the BOOTES world-wide Network of Robotic telescopes. Astronomical Society of India Conference Series, Vol. 7, 2012, p. 313-320 7, 313–320.

Castro-Tirado, A. J., Sánchez Moreno, F. M., Pérez del Pulgar, C., et al., 2014.The GLObal Robotic telescopes Intelligent Array for E-Science (GLORIA). Revista Mexicana de Astronomía y Astrofísica 45, 104–109.

Castro-Tirado, A. J., Soldán, J., Bernas, M., et al., 9 1999. The Burst Observerand Optical Transient Exploring System (BOOTES). Astronomy and Astrophysics Supplement Series 138 (3), 583–585. DOI:10.1051/aas:1999362

Delgado, F., Reuter, M. A., 7 2016. The LSST Scheduler from design to construction. SPIE Astronomical Telescopes+ Instrumentation, 991013.DOI:10.1117/12.2233630

Denny, R., 2011. A Web-Remote/Robotic/Scheduled Astronomical Data Acquisition System. In: Telescopes from Afar Conference. p. 47.

Ducci, L., Covino, S., Doroshenko, V., Mereghetti, S., Santangelo, A., Sasa-ki, M., 11 2016. Optical and near-infrared photometric monitoring of the transient X-ray binary A0538 with REM. Astronomy and Astrophysics 595,A103. DOI:10.1051/0004-6361/201629236

Falomo, R., Fantinel, D., Uslenghi, M., 9 2011. AETC: Advanced Exposure Time Calculator. In: Tescher, A. G. (Ed.), Applications of Digital Image Processing XXXIV. International Society for Optics and Photonics, pp.813523–. DOI:10.1117/12.913304

Gresham, K. C., Palma, C., Polsgrove, D. E., Chun, F. K., Della-Rose, D. J.,Tippets, R. D., 2016. Education and outreach using the falcon telescope network. Acta Astronautica 129, 130–134. DOI:10.1016/j.actaastro.2016.09.006

Hamuy, M., Pignata, G., Maza, J., et al., 2012. The CHilean Automatic Supernova sEarch. Memorie della Societa Astronomica Italiana 83, 388–392.

Jelínek, M., Castro-Tirado, A. J., Cunnie, R., et al., 2016. A decade of GRB follow-up by BOOTES in Spain (2003-2013). Advances in Astronomy.

Karpov, S., Beskin, G., Biryukov, A., et al., 2016. Mini-Mega-TORTORA wide-field monitoring system with sub-second temporal resolution: first year of operation. IV Workshop on Robotic Autonomous Observatories (Eds. María Dolores Caballero-García, Shasi B. Pandey, David Hiriart & AlbertoJ. Castro-Tirado) Revista Mexicana de Astronomía y Astroísica (Serie de Conferencias) Vol. 48, pp. 91-96 (2016) 48, 91–96.

Kubánek, P., 7 2016. Status, upgrades, and advances of RTS2: the open source astronomical observatory manager. In: Chiozzi, G., Guzman, J. C. (Eds.),SPIE Astronomical Telescopes+ Instrumentation. International Society for Optics and Photonics, p. 99132U.DOI:10.1117/12.2232555

Lampoudi, S., Saunders, E., Eastman, J., 2015. An integer linear programming solution to the telescope network scheduling problem. In: International Conference on Operations Research and Enterprise Systems.

Mankiewicz, L., Batsch, T., Castro-Tirado, A., et al., 2014. Pi of the Sky full system and the new telescope. III Workshop on Robotic Autonomous Observatories (Eds. Juan C. Tello, Alberto Riva, David Hiriart & Alberto J. Castro-Tirado) Revista Mexicana de Astronomía y Astrofísica (Serie de Conferenias) Vol. 45, pp. 7–11 (2014) 45, 7–11.

myweather2, 2017. Free weather API — XML weather and JSON weather feed for global locations. URL:http://www.myweather2.com

Nekola, M., Hudec, R., Jelínek, M., Kubánek, P., Štrobl, J., Polášek, C., 2010. BART: The Czech Autonomous Observatory. Advances in Astronomy 2010,1–5. DOI:10.1155/2010/103986

Ocaña, F., Ibarra, A., Racero, E., Montero, A., Doubek, J., Ruiz, V., 7 2016. First results of the Test-Bed Telescopes (TBT) project: Cebreros telescope commissioning. In: Hall, H. J., Gilmozzi, R., Marshall, H. K. (Eds.), SPIE Astronomical Telescopes+ Instrumentation. p. 990666. DOI:10.1117/12.2233142

Ottinger, J., Linwood, J., Minter, D., 2014. Beginning Hibernate 3rd, 3rd Edition. Apress Berkely, CA, USA.

Panetta, M. P., 2016. The EEE Project: An extended network of muon telescopes for the study of cosmic rays. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 824, 642–643. DOI:10.1016/j.nima.2015.10.073

Pickles, A., Hjelstrom, A., Boroson, T., et al., 8 2014. LCOGT network observatory operations. In: Peck, A. B., Benn, C. R., Seaman, R. L. (Eds.), SPIE Astronomical Telescopes+ Instrumentation. p. 914912. DOI:10.1117/12.2055215

Racero, E., Ocaña, F., Ponz, D., 2015. Towards an autonomous telescope system: the Test-Bed Telescope project. Highlights of Spanish Astrophysics, 828–833.

Saunders, E. S., Lampoudi, S., Lister, T. A., Norbury, M., Walker, Z., 8 2014. Novel scheduling approaches in the era of multi-telescope networks. In: Peck, A. B., Benn, C. R., Seaman, R. L. (Eds.), SPIE Astronomical Telescopes+ Instrumentation. p. 91490E. DOI:10.1117/12.2056642Sky-Map, 2017.

Sky-Map. URL:http://www.sky-map.org/

Solar, M., Michelon, P., Avarias, J., Garces, M., 2016. A scheduling model forastronomy. Astronomy and Computing 15, 90–104. DOI:10.1016/j.ascom.2016.02.005

Sosnowska, D., Ouadahi, A., Buchschacher, N., Weber, L., Pepe, F., 2014.Using Heuristic Algorithms to Optimize Observing Target Sequences. In: Astronomical Data Analysis Software and Systems XXIII. Vol. 485. p. 73.

Trillas, E., Eciolaza, L., 2015. Fuzzy Logic. Springer International Publishing.DOI:10.1007/978-3-319-14203-6

Volgenau, N., Boroson, T., 7 2016. Two years of LCOGT operations: the challenges of a global observatory. In: Peck, A. B., Seaman, R. L., Benn, C. R.(Eds.), SPIE Astronomical Telescopes+ Instrumentation. International Society for Optics and Photonics, p. 99101C. DOI:10.1117/12.2233830

Wang, F., Deng, H., Guo, L., Ji, K., 7 2010. A Survey on Scientific-Workflow Techniques for E-science in Astronomy. In: 2010 International Forum on In-formation Technology and Applications. IEEE, pp. 417–420. DOI:10.1109/IFITA.2010.210

Ye, Q.-Z., 2011. Forecasting Cloud Cover and Atmospheric Seeing for Astronomical Observing: Application and Evaluation of the Global Forecast System. Publications of the Astronomical Society of the Pacific 123, 113.

Zimmer, P., McGraw, J., Ackermann, M., 2015. Real-Time Optical Surveillance of LEO/MEO with Small Telescopes. Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, held in Wailea, Maui, Hawaii, September 15-18, 2014, Ed.: S. Ryan, The Maui Economic Development Board, id.103.

Abstract Views

1233
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Observation scheduling and simulation in a global telescope network
Carmen López-Casado, Carlos Pérez-del-Pulgar, Víctor F. Muñoz, Alberto J. Castro-Tirado
Future Generation Computer Systems  vol: 95  primera página: 116  año: 2019  
doi: 10.1016/j.future.2018.12.066



Licencia Creative Commons

Esta revista se publica bajo unaLicencia Creative Commons Atribución 4.0 Internacional.

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912