Robot Biocooperativo con Modulación Háptica para Tareas de Neurorehabilitación de los Miembros Superiores

C. Rodriguez-Guerrero, J.C. Fraile, J. Pérez-Turiel, P. Rivera Farina

Resumen

Los robots biocooperativos pueden mejorar las terapias tradicionales de rehabilitación proporcionando al paciente la asistencia adecuada en el instante adecuado. Distintos pacientes necesitan diferentes niveles de asistencia por parte del robot. Por ello, es muy interesante poder analizar el estado del paciente para, a partir de este análisis, determinar el grado de asistencia que el robot de rehabilitación debe proporcionarle.

En este artículo se presenta un novedoso método de rehabilitación para pacientes con discapacidad en los miembros superiores, que incluye las señales fisiológicas del paciente en el lazo de realimentación del control del robot de rehabilitación. Esto permite que el robot se “adapte” a las necesidades de cada paciente, regulando dinámicamente la cantidad de asistencia/resistencia de cada terapia, en función de los valores de las señales fisiológicas del paciente, que se miden y procesan “on-line”, mientras el paciente ejecuta las actividades de rehabilitación asistido por el robot. De esta forma, se conjuga la intensidad de la terapia con el estado de salud del paciente, pudiendo detectar y corregir (variando la intensidad de la actividad realizada), situaciones de estrés y ansiedad en el paciente, que podrían comprometer el resultado del programa de rehabilitación planificado.


Palabras clave

Robot; control biocooperativo; psicofisiología; rehabilitación; háptico

Texto completo:

PDF

Referencias

Cristea M., Levin M (2007). Improvement of arm movement patterns and endpoint control depends on type of feedback during practice in stroke survivors, Neurorehabil Neural Repair, vol. 21, pp. 398-411

Dietz V., Quintern J., and Berger W. (1981). Electrophysiological studies of gait in spasticity and rigidity. evidence that altered mechanical properties of muscle contribute to hypertonia, Brain, vol. 104, pp. 431-449.

Emken J.L. and Reikensmeyer D.J. (2007). Human-robot cooperative movement training: Learning a novel sensory motor transformation during walking with robotic assistance-as-needed, Neuroeng Rehabil, pp. 4-8.

Flash T and Hogan N. (1985). The coordination of arm movements: An experimentally confirmed mathematical model, The journal of Neuroscience, vol. 37, pp. 1037- 1047.

Goslin B., Olson R., McDonald A., Russi G. and Moudgil V. (2007). Longitudinal modeling of the relationship between age and maximal heart rate, Medicine Science in Sports Exercise, vol. 7, pp. 822-828.

Hogan N. (1985). Impedance control: An approach to manipulation. Journal of Dynamic Systems, Measurement, and Control, vol. 107, pp. 1-23.

Hogan N., Krebs H., Charnnarong J., Srikrishna P. and Sharon A. (1992). Mitmanus: a workstation for manual therapy and training, Proc. IEEE International Workshop on Robot and Human Communication, pp. 161–165.

Kwakkel G. Van Peppen R., Wagenaar R. Wood S and Richards C. (2004). Effects of augmented exercise therapy time after stroke: a metaanalysis, Stroke, vol. 35, pp. 25–39.

Lance J., Feldman R., Young R. and Koella W. (1980). “Spasticity: Disordered motor control.” in Chicago Year book Medical.

Lang, P. J. (1980). Behavioral treatment and bio-behavioral assessment: computer applications. In J. B. Sidowski, J. H. Johnson, & T. A. Williams (Eds.), Technology in mental health care delivery systems (pp. 119-l37). Norwood, NJ: Ablex.

Lang, P.J (1995). The emotion probe. Studies of motivation and attention. American Journal of Psychology, vol. 50, 372-385

Lum P., Burgar C., Shor P., Majmundar M. and der Loos M.V. (2002). Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper limb motor function after stroke, Arch. Phys. Med. Rehab, vol. 83, no. 7, pp. 952 - 959.

Novak D, Ziherl J, Olensek A, Milavec M, Podobnik J, Mihelj M, and Munih M, “Psychophysiological responses to robotic rehabilitation tasks in stroke,” IEEE Trans. Neural Systems and Rehabilitation Engineering (in press), 2010

Patton J.L., Stoykov M.E., Kovic M. and Mussa-Ivaldi F.A. (2006). Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors, Exp Brain Res, vol. 168, no. 3, pp. 368–383.

Platz T. (2003). Evidence-based arm rehabilitation: A systematic review of the literature, Nervenarzt, vol. 74, no. 10, pp. 841–849.

Reikensmeyer D., Kahn L., Averbuch M., McKena-Cole A., Schmit B. and Rymer W. (2000). “Understanding and treating arm movement impairment after chronic brain injury: Progress with the arm guide,” Rehab. Res.Dev, vol. 37, no. 6, pp. 653–662.

Riener R., Nef T. and Colombo G. (2005). Robot- aided neurorehabilitation of the upper extremities. Medical and Biological Engineering and Computing, vol. 43, pp. 2-10.

Riener R., Koenig A., Bolliger M., Wieser M., DuschauWicke A., Vallery H. (2009). Bio-Cooperative Robotics: Controlling Mechanical, Physiological and Mental Patient States. IEEE International Conference on Rehabilitation Robotics, pp. 407-412.

Kyoto International Conference Center, Japan, June 23-26, 2009

Rodríguez C., Fraile J.C. and Pérez-Turiel J. (2009). Robot adaptive behavior to suit patient needs and enable more intensive rehabilitation tasks, IEEE International Conference on Mechatronics, vol. 5, pp. 1-6. Malaga Spain April 14-17, 2009.

Russell, J.A. (1980). A circumplex model of affect. Journal of Personality and Social Psychology, 39, 1161–1178.

Sánchez R., Wolbrecht E., Smith R., Liu J., Rao S., Cramer S., Rahman T., Bobrow J. and Reinkensmeyer D. (2005). A pneumatic robot for re-training arm movement after stroke: Rationale and mechanical design, IEEE Int. Conf. Rehab., pp. 500–504.

Sánchez R., Liu J., Rao S., Shah P., Smith R., Rahman T., Cramer S., Bobrow J. and Reinkensmeyer D. (2006). Automating arm movement training following severe stroke: Functional exercises with quantitative feedback in a gravity-reduced environment gentle/s: Robot mediated therapy for stroke patients in a virtual world makes exercising more enjoyable and effective” IEEE Transactions on neural systems and rehabilitation engineering, vol. 14, no. 3, pp. 378-389

Van de Hel P., Driessen B. Oderwald M., Coote S. and Stokes E. (2001). Gentle/s: Robot mediated therapy for stroke patients in a virtual world makes exercising more enjoyable and effective, Assistive technology - added value to the quality of life AAATE’01, pp. 256–261.

Abstract Views

726
Metrics Loading ...

Metrics powered by PLOS ALM


 

Citado por (artículos incluidos en Crossref)

This journal is a Crossref Cited-by Linking member. This list shows the references that citing the article automatically, if there are. For more information about the system please visit Crossref site

1. Using “human state aware” robots to enhance physical human–robot interaction in a cooperative scenario
Carlos Rodriguez Guerrero, Juan Carlos Fraile Marinero, Javier Perez Turiel, Victor Muñoz
Computer Methods and Programs in Biomedicine  vol: 112  num.: 2  primera página: 250  año: 2013  
doi: 10.1016/j.cmpb.2013.02.003



Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912