Interfaz Multimodal para un Asistente Robótico Quirúrgico: Uso de Reconocimiento de Maniobras Quirúrgicas

Belén Estebañez, Pablo del Saz-Orozco, Isabel García-Morales, Víctor F. Muñoz

Resumen

Este trabajo propone una metodología para el reconocimiento de maniobras quirúrgicas en intervenciones de cirugía laparoscópica. El objetivo es la creación de un interfaz entre el cirujano y un asistente robótico quirúrgico de dos brazos para procesos de cirugía mínimamente invasiva. El interfaz propuesto recibe la información sobre el posicionado de las herramientas quirúrgicas del cirujano mediante sensores 3D y el sistema de reconocimiento facilita la maniobra actual que se ha realizado. Por lo tanto, el sistema de reconocimiento de maniobras sobre el que se apoya este interfaz necesita una librería de modelos de maniobras para trabajar. Los modelos elegidos para representar las maniobras quirúrgicas son los Modelos Ocultos de Markov. Para validar la metodología propuesta, se han desarrollado una serie de experimentos in-vitro.

Palabras clave

maniobras quirúrgicas; reconocimiento de patrones; interfaz hombre-máquina; asistente robótico quirúrgico

Texto completo:

PDF

Referencias

Baum L. E. y otros (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains. The Annals of Mathematical Statistics, Vol. 41, No. 1, pp. 164-171.

Bauzano E y otros (2009). Three-Layer Control for Active Wrists in Robotized Laparoscopic Surgery. IEEE/RSJ International Conference on Intelligent Robots and Systems, Missouri, EEUU.

Brell M., et al., “Positioning tasks in multimodal computernavigated surgery”, IEEE Multimedia, 2007, pp. 42-51.

Butner S., et al., “Transforming a Surgical Robot for Human Telesurgery”, IEEE Transactions on Robotics and Automation, Octubre 2003, Vol. 19, No. 5, pp. 818–824.

Casals A. y otros (1995). Vision Guided Robotic System for Laparoscopic Surgery. IFAC International Congress on Advanced Robotics, Barcelona, España, p. 33-36.

Fernández J.J., “Robots para movimiento de la cámara en cirugía laparoscópica”, ETSII, Universidad de Málaga, 2002.

Finlay P.A. and M. H. Ornstein, “Controlling the Movement of a Surgical Laparoscope”, IEEE Engineering in Medicine and Biology, Mayo/Junio 1995, pp. 289-291.

Gan Q., et al., “Comparison of two measurement fusion methods for Kalman filter based multisensory data fusion”, IEEE Transactions on Aerospace and Electronic Systems, 37(1), pp. 273-280.

Gomez J. B., et al., “Mouth gesture and voice command based robot command interface”, IEEE International Conference on Robotics and Automation, 2009, pp. 333-338.

Güven Y., et al., “Medical user interface for orthopedical surgical robotic system”, 15th National Biomedical Engineering Meeting, 2010, pp. 16-22.

Kalman R.E., “A New Approach to Linear Filtering and Prediction Problems”, Transactions of the ASME-Journal of Basic Engineering, 82 (Series D),1960, pp. 35-45.

Ko Seong-Young y Kwon Dong-Soo, “A Surgical Knowledge Based Interaction Method for a Laparoscopic Assistant Robot”, Proceedings of the 2004 IEEE International Workshop on Robot and Human, Japon, Septiembre 2004, pp. 313–318.

Ko Seong-Young, et al., “Intelligent Interaction between Surgeon and Laparoscopic Assistant Robot System”, 2005 IEEE International Workshop on Robots and Human Interactive, Agosto 2005, pp. 60–65.

Megali G., et al., “Modelling and Evaluation of Surgical Performance Using Hidden Markov Models”, IEEE Transactions on Biomedical Engineering, Octubre 2006, Vol. 53, No. 10, pp. 60–65.

Miklós y Meyer I. M., “A linear memory algorithm for BaumWelch training”, BMC Bioinformatics, 2005, Vol. 6, No. 1.

Muñoz V. F., et al., “A Medical Robotics Assistant for Minimally Invasive Surgery”, IEEE International Conference on Robotics and Automation ICRA, San Francisco (USA), 2000, Vol. 3, pp. 2901-2906.

Muñoz V. F., et al., “A new robotic endoscope manipulator”, Surgical Endoscopy, Ultrasonic and Interventional Techniques, Springer-Verlag. New York, Junio 2001, Vol. 15, No. 9, pp. 924-927.

Murphy K., “Hidden Markov Model (HMM)”, Toolbox for Matlab [Online]. Disponible: http://www.ai.mit.edu/~murphyk/Software/HMM/hmm.htm l.

Nishikawa A., et al.,” FAce MOUSe: A Novel Human–Machine Interface for Controlling the Position of a Laparoscope”, IEEE Transactions On Robotics And Automation, Octubre 2003, Vol. 19, No. 5, pp.825-841.

Noonan D.P., et al., “Gaze contingent articulated robot control for robot assisted minimally invasive surgery”, International Conference on Intelligent Robots and Systems, 2008, pp. 1186-1191.

Novák D., et al., “Speech Recognition Methods Applied to Biomedical Signals Processing”, Proceedings of the 26th Annual International Conference of the IEEE EMBS, San Francisco, USA, Septiembre 2004, pp. 118-121.

Rabiner L.R., “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition”, Proceedings of the IEEE, Febrero 1989, Vol. 77, No. 2, pp. 257-286.

Rabiner L.R., “An Introduction to Hidden Markov Models”, IEEE ASSP MAGAZINE, Enero 1986, pp. 4-16.

Rosen J., et al., “Objective Laparoscopic Skills Assessments of Surgical Residents Using Hidden Markov Models Based on Haptic Information and Tool/Tissue Interactions”, Studies in Health Technology and Informatics - Medicine Meets Virtual Reality, Newport Beach, CA, Enero 2001.

Rosen J., et al., “Markov Modeling of Minimally Invasive Surgery Based on Tool/Tissue Interaction and Force/Torque Signatures for Evaluating Surgical Skills”, IEEE Transactions on Biomedical Engineering, Mayo 2001, Vol. 48, No. 5, pp. 579-591.

Rosen J., et al., “The BlueDRAGON - A System for Measuring the Kinematics and the Dynamics of Minimally Invasive Surgical Tools In-Vivo”, Proceedings of the 2002 IEEE Intemational Conference on Robotics & Automation, Washington, Mayo 2002, Vol. 2, pp. 1876-1881.

Rosen J., et al., “Generalized Approach for Modeling Minimally Invasive Surgery as a Stochastic Process Using a Discrete Markov Model”, IEEE Transactions on Biomedical Engineering, Marzo 2006, Vol. 53, No. 3, pp. 399-413.

Sackier J., et al., “Voice Activation of a Surgical Robotic Assistant”, The American Journal of Surgery, Octubre 1997, Vol. 174, No. 4, pp. 406-409.

Satava R., “Virtual reality surgical simulator”, Surgical Endoscopy, 1993, Vol. 7, pp. 203–205.

Tsekos N.V., “MRO-guided robotics at the U of Houston: Evolving Methodologies for interventions and surgeries”, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009, pp. 5637-5640.

Viterbi A. J., “A personal history of the Viterbi algorithm”, IEEE Signal Processing Magazine, Julio 2006, Vol. 23, pp. 120 - 142.

Wang Y., et al., “Automated endoscope system for optimal positioning”, Patente de invención número US5815640, Estados Unidos.

Zhang S.H., et al., “The human machine interface implementation for the robot assietd endoscopic surgery system”, IEEE International Workshop on Robot and Human Interactive Communication, 2002, pp. 442-447.

Abstract Views

1357
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912