Diseño y Análisis de Control con Modos Deslizantes para Sistemas con Predictores de Asignación Finita de Polos

Pedro Acosta, Leonid Fridman

Resumen

Se presenta una forma de controlar sistemas con retardo en la entrada o en la salida utilizando modos deslizantes y predictores tipo Smith, conocidos como asignación finita de polos. La utilización de predictores elimina el castañeteo en la superficie deslizante debido al retardo. Se introduce un método de diseño de la superficie deslizante para estos predictores, se analiza el método propuesto y las posibles dificultades a resolver debido a incertidumbres en la estimación de los parámetros. Por último se presentan ejemplos numéricos para ilustrar el método y algunos aspectos del análisis desarrollado.

Palabras clave

predictor; modos deslizantes; castañeteo; robustez; asignación finita de polos; incertidumbres; perturbaciones

Texto completo:

PDF

Referencias

Adam, E. J., Latchman, H.A. y Crisalle, O. D. (2000), Robustness of the Smith Predictor with Respect to Uncertainty in the Time Delay Parameter, Proc. American Control Conf. Chicago, Ill., p. 1452-1457.

Astrom, K. J. (1997), Frecuency domain properties of Otto Smith regulators, Int. J. Control, vol. 26, p. 307-314.

Camacho, O., Rojas, R. y García-Gabín, W., (2007) Some long time delay sliding mode control approaches, ISA Transactions, vol. 46, p. 95-101.

Drakunov, S.V. y V.I. Utkin (1993). Sliding mode control in dynamic systems. Int. Journ. of Control, vol.55, p.1029- 1037.

Drazenovic B. (1969). The time invariant conditions for invariant systems. Automatica, vol. 5, p. 287-295.

Fiagedzi Y.A. y Pearson, A. E., (1986). Feedback stabilization of linear autonomous time Lag systems. IEEE Trans. on Automatic Control, vol. 31, p. 847-855.

Fridman, L., Acosta, P. y Polyakov, A., (2001), Robust eigenvalue assignment for uncertain delay control systems, Proceedings of the 3rd IFAC International Workshop on Time Delay Systems, Santa Fe, New Mexico.

Furutani, E., Araki, M., (1998), Robust Stability of StatePredictive and Smith Control of Plants with a Pure Delay, Int. J. Robust and Nonlinear Control, vol. 8, p. 907-919.

Fuyikawa, H. y Yamada, S. (1991), A Design Method of SelfTuning Smith predictor for unknown time delay system, IECON’91, p. 1801-1806.

García P., Albertos P., y Häglund T, (2006) Control of Unstable Non Minimum Phase Delayed systems, Journal of Process Control, Vol. 16, No. 10, p. 1099-1111.

Hong, K. y Kang, D., (1999), Reclaimer Control: Modelling, Identification, and a Robust Smith Predictor, Proc. 1999 IEEE/RSJ Int. Conf. On Intelligent Robots and Systems vol.1, p.344-349.

Khalil, H, (2002), Nonlinear Systems, 3rd ed., Prentice Hall, Upper Saddle River, NJ.

Laughlin, D.L., Rivera, D. E., y Morari, M., (1987), Smith predictor design for Robust Performance, Int. J. Control, vol. 46, no. 2, p. 477-504.

Li, X. y Yurkovich, S., (2001), Sliding Mode Control of Delayed Systems with Application to Engine Idle Speed Control, IEEE Transactions on Control Systems Technology, vol. 9, no. 6, p. 802-810.

Loukjanov, A. y V. Utkin (1981). Methods of reducing equations for dynamic systems to a regular form, Automation andRemote Control, vol. 42, 413-420.

Manitius, A. Z. y Andrzej W. Olbrot, A. W., (1979), Finite Spectrum Assignment Problem for Systems with Delays, IEEE Transactions on Automatic Control, vol. 24, no. 4, p. 541- 552.

Mao, X. y Xu B., (1997), Comments on “An improved Razumikhin-type theorem and its applications” [and reply], IEEE Transactions on Automatic Control, vol. 42, no. 3, p. 429-430.

Milic´ R. Stojic´, Milan S. Matijevic´, y Ljubi¡sa S. Draganovic´ (2001), A Robust Smith Predictor Modified by Internal Models for Integrating Process with Dead Time, IEEE Trans. Automatic Control, vol. 46, no. 8, p.1293-1298

Nguang, S.K. (2001) Comments on “Robust stabilization of uncertain input delay systems by sliding mode control with delay compensation”, Automatica, vol.37, p. 1677.

Normey-Rico, J.E. y Camacho E.F., (2006) Predicción para control: Una panorámica de control de procesos con retardo, Revista Iberoamericana de Automática e Informática Industrial, vol. 3, no.4, p. 5-25.

Richard, J.P., (2003), Time-Delay Systems: an overview of some recent advances and open problems, Automatica, vol. 39, p. 1667-1694.

Roh, Y.- H. y J.-H. Oh, (1999). Robust stabilization of uncertain input delay systems by sliding mode control with delay compensation, Automatica, vol. 35, p.1861-1865.

Smith, O. J.M., (1957), Closer control of loops with dead time, Chemical Engineering Progress, vol. 53, no. 5, p. 217- 219.

Utkin, V.I., Guldner, J. y Shi J. (1999) Sliding mode Control in Electromechanical Systems, Taylor & Francis, Philadelphia.

Wang, Q.G., Lee, T.H., Tan, K.K. y Bi, Q., (1995), A new approach to analysis and design of Smith Predictor Controllers, Proc. American Control Conf. Seattle, Washington, vol. 6, p. 4194-4198.

Xu, B. y Liu, Y., (1994), An Improved Razumikhin-Type Theorem and its applications, IEEE Trans. On Automat. Contr., vol. 39, no. 4, p. 839-841.

Abstract Views

525
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912