Modelado y Control de Convertidores Conmutados Continua-Continua: Una perspectiva Tutorial

Autores/as

  • L. Martinez Salamero Universidad Rovira i Virgili
  • A. Cid Pastor Universidad Rovira i Virgili
  • A. El Aroudi Universidad Rovira i Virgili
  • R. Giral Universidad Rovira i Virgili
  • Javier Calvente Universidad Rovira i Virgili

DOI:

https://doi.org/10.1016/S1697-7912(09)70104-9

Palabras clave:

Convertidores conmutados, sistemas de estructura variable, sistemas no lineales, modulación de anchura de pulsos, control no lineal, control en modo de deslizamiento, sistemas de control lineal, control H-infinito, comportamiento caótico

Resumen

En este trabajo se presenta de forma tutorial los conceptos básicos de modelado y control de convertidores conmutados continua-continua. Tras definir la Electrónica de Potencia y su dominio de utilización, se presenta la conversión continua-continua (cc-cc) como núcleo básico de aquella y se clasifican los convertidores conmutados cc-cc como sistemas de estructura variable. Se introduce posteriormente la noción de regulador conmutado y se describe el funcionamiento de un modulador de anchura de pulsos para derivar un modelo de tiempo continuo a partir de un análisis de la dinámica promediada del convertidor. A partir del modelo de tiempo continuo del convertidor, se obtiene el modelo dinámico del regulador conmutado y se describen controladores lineales de un solo lazo y controladores en cascada. El control no lineal de convertidores se aborda a partir de la inducción de regímenes deslizantes en las estructuras de potencia. Se establece a continuación la equivalencia de estos sistemas con los que utilizan modulador de anchura de pulsos, y se describen algunas de sus aplicaciones. Finalmente se ofrece una perspectiva de las técnicas de estudio de la dinámica no lineal en convertidores mediante un enfoque generalizado a partir de un modelo de tiempo discreto que permite analizar las bifurcaciones resultantes y controlar el caos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Alarcón, E., Romero, A., Poveda, A., Porta, S. y MartinezSalamero, L. “Current-mode analogue integrated circuit for sliding-mode control of switching power converters”, (2002). IEE Electronics Letters 38, pp 104-106.

Alfayoumi, M., Nayfeh, A. H. y Borojevic, D. (1999) “Input filter interactions in DCíDC switching regulators,” IEEE Power Electronic Specialist Conf. PESC’96, Vol. 2, pp. 283–286.

Arango, E. Modelling and control of an asymmetric interleaved DC-to-DC switching converter. (2009), Tesis doctoral, Universidad Rovira i Virgili.

Banerjee, S., Ranjan, P. y Grebogi, C. (2000) “Bifurcationsin two–dimensional piecewise smooth maps–theory and applications in switching circuits,” IEEE Trans. Circuits Syst.-I 47, 633–647.

Biel, D., Martínez –Salamero, L., López, J., Pérez, Y., Jammes, B. y Marpinard,J.C., “Minimum-time control of a buck converter for bipolar square-wave generation”. (1998), Fifth European Space Power Conference, ESPC´98.

Biel, D., Fossas, E., Guinjoan, F., Alarcón, E. y Poveda, A., “Application of sliding-mode control to the design of a buck-based sinusoidal generator” (2001), IEEE Trans. Indust. Electron. 48, pp 563-571.

Biel, D., Guinjoan, F., Fossas, E., y Chavarria, J., “Sliding-Mode Control Design of a Boost-Buck Switching Converter for AC Signal Generation” (2004), IEEE Trans. Circuits Syst-I 51, pp 1539-1551.

Brockett, R.W. y Wood, J. R. “Electrical networks containing controlled switches”. (1974). Applications of Lie group theory to nonlinear network problems. Supplement to IEEE International Symposium on Circuit Theory, pp 1-11.

Brockett, R. W. y Wood, J. R. (1984), “Understanding power converter chaotic behaviour mechanisms in protective and abnormal modes”, Proc. Powercon 11, paper E-14.

Calvente, J., Martínez-Salamero, L., Garcés, P., Leyva, R. y Capel, A., “Dynamic Optimization of Bidirectional Topologies for Battery Charge/Discharge in Satellites”. (2001) IEEE Power Electronics Specialists Conference, PESC´01.

Calvente, J. Control en modo deslizante aplicado a sistemas de acondicionamiento de potencia de satélites (2001). Tesis doctoral, Universidad Politécnica de Cataluña.

Calvente, J., Guinjoan, F., Martinez, L. y Poveda, A. (1996) “Subharmonics bifurcations and chaos in a sliding mode controlled boost switching regulator,” Int. Symp. Circuits and Systems, ISCAS’96, Atlanta, pp. 573–576.

Calvente, J., Martínez-Salamero, L., Garcés, P., y Romero, A. “Zero dynamics –based design of damping networks for switching converters”. (2003), IEEE Trans. Aerosp. Electron Syst 39, pp 2295-2296.

Capel, A., Clique, M. y Fossard, A.J., “Current Control Modulators: General Theory on Specific Designs”. (1981) IEEE Trans. Indust. Electron. and Contr. Instrument. 28, pp 292-307.

Chan W.C.Y. and Tse C.K., (1997) "Study of Bifurcations in Current-Programmed DC/DC Boost Converters: From Quasi-Periodicity to Period-Doubling," IEEE Transactions on Circuits and Systems I, vol. 44, no. 12, pp. 1129-1142.

Cid-Pastor, A. Energy processing by means of power gyrators (2005). Tesis doctoral, Universidad Politécnica de Cataluña (http://www.tdx.cesca.es).

Cid-Pastor, A., Martínez-Salamero, L, Alonso, C., Estibals B., Alzieu, J., Schweitz, y Shmilovitz D. “Analysis and design of power gyrators in sliding-mode operation”. (2005) IEE Proc. Electr. Power Appl. 152, pp 821-826.

Cid-Pastor, A., Martínez-Salamero, L, Alonso, C., Schweitz, G., Calvente, J., y Singer, S. “Synthesis of power gyrators operating at constant switching frequency”. (2006) IEE Proc. Electr. Power Applic, 153, pp 842-847.

Deane, J. H. B. (1992) “Chaos in current-mode controlled boost DC–DC converter,” IEEE Trans. On Circuits Syst. I - Fundamental Theory and Applications, 39, 680–683.

Deane, J. H. B. & Hamill, D. C. (1990) “Instability, subharmonics and chaos in power electronic systems,” IEEE Trans. Power Electron. 5, 260–268.

Di Bernardo, M., Garofalo, F., Gliemo, L. y Vasca, F. (1998) “Switching, Bifurcations and Chaos in DC-DC converters”, IEEE Trans. On Circuits Syst. I -Fundamental Theory and Applications, Vol. 45, pp. 133-142.

El Aroudi, A., Benadero, L., Toribio, E., Olivar, G. (1999) "Hopf bifurcation and chaos from torus breakdown in a PWM voltage-controlled DC-DC Boost converter", IEEE Trans. on Circuits and Systems I-Fundamental Theory and Applications. Vol 46, No 11, pp. 1374 – 1382.

El Aroudi, A., Benadero, L., Toribio, E., Machiche, S. (2000) "Quasiperiodicity and Chaos in the DC-DC Buck-Boost Converter". International Journal of Bifurcation and Chaos. Vol 10, No 2, pp359 – 371.

El Aroudi, A. y Leyva, R. (2001) “Quasi-periodic route to chaos in a PWM voltage-controlled dc-dc boost converter,” IEEE Trans. on Circuits and Systems I-Fundamental Theory and Applications. 48, 967–978.

Erickson, R.W. & Maksimovic, D., Fundamentals of Power Electronics, 2nd Edition, Kluwer Academic Publishers, USA, 2001.

Escobar, G., Ortega, R., Sira-Ramírez, H., Vilain, J.P. y Zein, I. “An experimental comparison of several nonlinear controllers for power converters”. (1999) IEEE Control Syst. Mag., 19, pp 66-82.

Fang, C.-C. y Abed, E. H. (2001) “Harmonics balance analysis and control of period-doubling bifurcation in buck converters,” in Int. Symp. Circuits and Systems, ISCAS’00, Vol. 2, pp. 209–212.

Fang, C.-C. y Abed, E. H. (2002), “Robust Feedback Stabilization of Limit Cycles in PWM DC-DC Converters,” Nonlinear Dynamics, 27: 1295-309, 2002.

Filipov, A.F. “Differential Equations with Discontinuous Right Hand Sides”. (1964) Americ. Math. Society Translations, 42, pp 199-231.

Fossas, E. y Olivar, G. (1996) “Study of chaos in the buck converter,” IEEE Trans. Circuits Syst.-I 43, 13–25.

García-Deza, C., Martínez, L, Poveda, A., Guinjoan, F., y Font, J. “General purpose PWM nonlinear controller for bidirectional switching converters”. (1995) European Power Electronics Conference, EPE´95.

García de Vicuña, L., Poveda, A, Martínez, L., Guinjoan, F. y Majó, J. “Computer–aided discrete-time large-signal analysis of switching regulators”. (1992), IEEE Trans. Power Electron., 7, pp 75-82.

Giral, R., Martínez-Salamero, L., Leyva, R. y Maixé, J., “Sliding–Mode Control of Interleaved Boost Converters”. (2000), IEEE Trans. Circuits Syst-I 47, pp 1330-1339.

Guinjoan, F., Calvente, J., Poveda, A., y Martínez, L. Large“Signal Modelling and Simulation of Switching DC-DC Converters”. (1997), IEEE Trans. Power Electron., 12, pp 485-494.

Hamill, D. C. y Jefferies, D. J. (1988) “Subharmonics and chaos in a controlled switched–mode power converter,” IEEE Trans. Circuits Syst.-I 35, 1059–1060.

Kassakian, J.G., Schlecht, M.F.y Verghese, G.C. Principles of Power Electronics. (1991) Addison-Wesley.

Kosov, O. A., “Comparative Analysis of chopper voltage regulators with LC filters”, (1968). IEEE Trans. Magnetics Vol. MAG-4, pp. 712-715.

Leyva, R., Martínez-Salamero, L., Valderrama-Blavi, H., Maixé, J., Giral, R., Guinjoan, F. “Linear-state feedback control of a boost converter for large-signal stability” (2001), IEEE Trans. Circuits Syst-I 48, pp 418-424.

Leyva, R., Alonso, C., Queinnec, I., Cid-Pastor, A., Lagrange, D. y Martínez-Salamero, L., “MPPT of photovoltaic systems using extremum seeking control”. (2006), IEEE Trans. Aerosp. Electron Syst 42, pp 249-258.

Leyva, R., Cid-Pastor, A., Alonso, C., Queinnec, I., Tarbouriech, S. y Martínez-Salamero, L. “Passivity-based integral control of a boost converter for large-signal stability”. (2006), IEE Proc. Control Theory Appl. 153, pp 139-146

Luo, S. y Batarseh I., “A review of distributed power systems. Part I: DC distributed power systems”. (2005), IEEE Aerosp. Electron Magaz. 20, pp 5-15.

Martínez-Salamero, L., Calvente, J., Giral, R., Poveda, A., y Fossas, E. “Analysis of a bidirectional coupled –inductor Cuk converter operating in sliding-mode” (1998), IEEE Trans. Circuits Syst-I 45, pp 353-363.

Martínez-Salamero, L., Valderrama –Blavi, H., Giral, R., Alonso, C., Estibals, B.y Cid-Pastor, A. “Self-Oscillating DC-to-Dc Switching Converters with Transformer Characteristics” (2005), IEEE Trans. Aerosp. Electron Syst 41, pp 710-716.

Middlebrook, R.D.y Cuk, S. “A general unified approach to modelling switching -converter power stages”. (1976), IEEE Power Electronics Specialists Conference, PESC, pp 18-34.

Middlebrook, R.D. “Power Electronics: an emerging discipline”. (1981). Advances in Switched-Mode Power Conversion, Teslaco, pp 11-15.

Naim, R., Weiss, G., y Ben–Yaakov, S. “H∞ control applied to boost power converters”. (1997), IEEE Trans. Power Electron., 12, pp 677-683.

Olalla, C. Robust Linear Control of DC-DC Converters. (2009), Tesis doctoral, Universitat Politècnica de Catalunya.

Ott E., Grebogi C., Yorke J.A (1990)., Controlling Chaos, Physical Review Letters, vol. 64, pp. 1196-1199, 1990.

Poveda, A. Modelos matemáticos para reguladores conmutados continua-continua con lazo de control de corriente (1988). Tesis doctoral, Universidad Politécnica de Cataluña.

Prajoux, R., Marpinard, J.C. y Jalade, J. “Etablissement de modèles mathématiques pour régulateurs de puissance à modulateurs de largeur d´impulsions”. (1976). ESA Scientific and Technical Review, 2, pp 115-129.

Pyragas K. (2001) “Control of Chaos via an Unstable Delayed Feedback Controller”, Physical Reviews Letters, vol. 86, no. 11, pp. 2265-2268.

PSIM, Software by Powersim Inc. disponible en www.powersimtech.com

Romero, A. Circuito integrado de control deslizante para convertidores conmutados continua-continua (2001). Tesis doctoral, Universidad Politécnica de Cataluña.

Sanders, S.R. Nonlinear Control of Switching Converters. (1989) Tesis doctoral. EECS Dept., Massachussets Institute of Technology.

Sira-Ramírez, H. “Sliding motions in bilinear switched networks”. (1987) IEEE Trans. Circuits Syst. 34, pp 919- 933.

Tan, S.C., Lai, Y.M., Tse, C.K. “Implementation of pulse-width modulation based sliding mode controllers for boost converters” (2005), IEEE Power Electronics Letters, 3, pp 130-135.

Tan, S.C. Development of Sliding Mode Controllers for DC-DC Converters. (2005), Tesis doctoral, Honk Kong Polytechnic University.

Tan, S.C., Lai, Y.M., Tse, C.K. “A Unified Approach to the Design of PWM based sliding mode voltage controller for basic DC-DC converters in continuous conduction mode”. (2006), IEEE Trans. Circuits Syst. I, 53, pp 1816-1827.

Tse, C. K. (1994) “Flip bifurcation and chaos in three state boost switching regulators,” IEEE Trans. Circuits Syst.-I 41, 16– 23.

Tymersky, R. y Vorperian, V. “Generation and classification of PWM DC-to-DC Converters”. (1988), IEEE Trans. Aerosp. Electron Syst. 24, pp 743-753.

Utkin, V.I., Sliding modes and their applications in variable structure systems (1978), Moscow, U.S.S.R: Mir.

Utkin, V.I., “Sliding mode control principles and applications to electric drives”. (1993), IEEE Trans. Indust. Electron., 40, pp 23-36.

Venkataraman, R., Sliding mode control of power converters. (1986), Tesis dosctoral. California Institute of Technology.

Vidal-Idiarte, E., Martínez-Salamero, L., Valderrama-Blavi, H., Guinjoan, F., y Maixé, J. “Analysis and Design of H∞ control of Nonminimum–Phase Switching Converters” (2003), IEEE Trans. Circuits Syst-I 50, pp 1316-1323.

Vidal-Idiarte, E., Martínez-Salamero, L., Guinjoan, F., Calvente, J., y Gomáriz, S. “Sliding and Fuzzy Control of a Boost Converter using an 8-bit microcontroller”. (2004) IEE Proc. Electr. Power Appl. 151, pp 5-11.

Vidal-Idiarte, E., Martínez-Salamero, L., Calvente, J., y Romero, A. “An H∞ control strategy for switching converters in sliding-mode current control” (2006), IEEE Trans. Power Electron. 21, pp 553-556.

Webster, G.W. y Middlebrook, R.D. “Low-frequency characterization of switched DC-DC converters”. (1973), IEEE Trans. Aerosp. Electron Syst 9, pp 376-385.

Yuan, G., Banerjee, S., Ott, E. & Yorke, J. A. (1998) “Border collision bifurcations in the buck converter,” IEEE Trans. Circuits Syst.-I 45, 707–715.

Zhou, K., Doyle, J.C., y Glover, K. Robust and Optimal Control. (1996) Englewood Cliffs, NJ: Prentice-Hall.

Descargas

Publicado

08-10-2009

Cómo citar

Martinez Salamero, L., Cid Pastor, A., El Aroudi, A., Giral, R. y Calvente, J. (2009) «Modelado y Control de Convertidores Conmutados Continua-Continua: Una perspectiva Tutorial», Revista Iberoamericana de Automática e Informática industrial, 6(4), pp. 5–20. doi: 10.1016/S1697-7912(09)70104-9.

Número

Sección

Tutoriales