Identificación Robusta de Modelos Wiener y Hammerstein

Silvina I. Biagiola, José L. Figueroa

Resumen

Los modelos orientados a bloques han mostrado ser útiles y eficaces como representaciones no lineales en muchas aplicaciones. Son modelos simples y a la vez válidos en una región más amplia que un modelo lineal invariante en el tiempo. En cuanto a su estructura, consisten en una cascada integrada por una dinámica lineal y un bloque estático no lineal. Si bien existen en la literatura numerosos trabajos que abordan la identificación nominal de estos modelos, el problema de identificación robusta en presencia de incertidumbre no ha sido cabalmente tratado. En este trabajo, se consideran dos clases de modelos orientados a bloques: modelos Wiener y Hammerstein. Empleando una representación paramétrica, se propone describir la incertidumbre como un conjunto de parámetros, cuyos valores se obtienen resolviendo un problema de optimización. El algoritmo de identificación desarrollado se ilustra mediante ejemplos de simulación.

Palabras clave

Wiener; Hammerstein; Identificación; Incertidumbre; Optimización

Texto completo:

PDF

Referencias

Belforte, G. and P. Gay (2001). Discrete time Hammerstein model identification with unknown but bounded errors. IEE Proc. Control Theory Applications 148, 6, 523–529.

Celka, P. and P. Colditz (2002). Nonlinear nonstationary Wiener model of infant EEG seizures. IEEE Transactions on Biomedical Engineering 49, 556–564.

Falugi, P., L. Giarre and G. Zappa (2005). Approximation of the feasible parameter set in worst-case identification of Hammerstein models. Automatica 41, 1017–1024.

Fruzzetti, K.P., A. Palazoglu and K.A. McDonald (1997). Nonlinear model predictive control using Hammerstein models. Journal of Process Control 7, 31–41.

Gómez, J.C. and E. Baeyens (2000). Identification of multivariable Hammerstein systems using rational orthonormal bases. IEEE Conference on Decision and Control 3, 2849–2854.

Gómez, J.C. and E. Baeyens (2004). Identification of block-oriented nonlinear systems using orthonormal bases. Journal of Process Control 14, 685–697.

Greblicki, W. (1994). Nonparametric identification of Wiener systems by orthogonal series. IEEE Transactions on Automatic Control 39, 2077–2086.

Greblicki, W. (1997). Nonparametric approach to Wiener systems identification. IEEE Transactions on Circuits and Systems 44, 538–545.

Hadjiloucas, S., A. Izhac, R.K.H. Galvao, J.W. Bowen and V.M. Becerra (2004). State-space model identification of a wireless THz network. International Conference on Infrared and Millimeter Waves pp. 375–376.

Hagenblad, A. and L. Ljung (2000). Maximum likelihood estimation of Wiener models. IEEE Conf. on Decision and Control 3, 2417–2418.

Huang, A., J.M.A. Tanskanen and I.O. Hartimo (1998). Design of optimum power estimator based on Wiener model applied to mobile transmitter power control. IEEE International Symposium on Circuits and Systems 8, 249–252.

Hunter, I.W. and M.J. Korenberg (1986). The identification of nonlinear biological systems: Wiener and Hammerstein cascade models. Biological Cybernetics 55, 135–144.

Kalafatis, A., N. Arifin, L. Wang and W.R. Cluett (1995). A new approach to the identification of pH processes based on Wiener model. Chemical Engineering Science 50, 3693– 3701.

Kozek, M. and S. Sinanovic (2007). Identification of Hammerstein models using optimal local linear models. Proc. EUROSIM 2007, 9-13 Sept. 2007, Ljubliana, Eslovenia.

Lussón Cervantes, A., O. Agamennoni and J. Figueroa (2003). ´ Robust Identification of PWL-Wiener Models: Use in Model Predictive Control. Latin American Applied Research 33, 435–442.

Lussón Cervantes, A., O. Agamennoni and J. Figueroa (2003). A Nonlinear Model Predictive Control System Based on Wiener Piecewise Linear Models. Journal of Process Control 13, 655–666.

Nelles, O. (2001). Nonlinear system identification. Springer. Berlin.

Norquay, S.J., A. Palazoglu and J.A. Romagnoli (1998). Model predictive control based on wiener models. Chemical Engineering Science 53, 75–84.

Pajunen, G.A. (1987). Comparison of linear and nonlinear adaptive control of a pH process. IEEE Control Systems Magazine 7, 39–44.

Pajunen, G.A. (1992). Adaptive control of wiener type nonlinear systems. Automatica 28, 781–785.

Pearson, R.K. and M. Pottmann (2000). Gray-box identification of block-oriented nonlinear models. Journal of Process Control 10, 301–315.

Pottmann, M. and R.K. Pearson (1998). Block- oriented NARMAX models i-th output multiplicities. AIChE Journal 44, 131–140.

Skrjanc, I., S. Blazic and O. Agamennoni (2005). Interval fuzzy modeling applied to PWL-Wiener models with uncertainties. IEEE Transactions on Systems, Man, and Cybernetics, Part B 35, 5, 1092–1095.

Stapleton, J. and S. Bass (1985). Adaptive noise cancellation for a class of nonlinear dynamic reference channels. IEEE Transactions on Circuits and Systems CAS-32, 143–150.

Sznaier, M. (2009). Computational complexity analysis of set membership identification of Hammerstein and Wiener systems. Automatica 45, 701–705.

Visala, A., H. Pitkanen and J. Paanajärvi (1999). Wiener-NN ¨ models and robust identification. International Joint Conference on Neural Networks 3, 2188–2193.

Wigren, T. (1993). Recursive prediction error identification using the nonlinear wiener model. Automatica 29, 1011– 1025.

Zhu, Y. (1999). Distillation column identification for control using Wiener model. American Control Conference 5, 3462– 3466.

Abstract Views

439
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912