Reduciendo distancias entre el control borroso y el control no lineal: luces y sombras

Antonio Sala, Carlos V. Ariño

Resumen

Aunque el control borroso nació como una metodología heurística, las formulaciones en desigualdades matriciales lineales del control borroso se han convertido en la herramienta más utilizada en dicho área desde los años 90. Muchos sistemas no lineales pueden ser modelados como sistemas borrosos (con la metodología de sector no lineal) de modo que el control borroso puede considerarse como una técnica para el control no lineal. Aunque se han obtenido muchos y buenos resultados, quedan algunas fuentes de conservadurismo cuando se comparan con otros enfoques de control no lineal. Este artículo discute dichas cuestiones de conservadurismo (sombras) y plantea algunas ideas (luces) para resolverlas, aunque muchas de las propuestas tienen alto coste computacional.

Palabras clave

control borroso; control inteligente; desigualdades matriciales lineales

Texto completo:

PDF

Referencias

Al-Hadithi, B.M., F. Matía y A. Jiménez (2005). Controladores Borrosos Basados en Estructura Variable con Modos Deslizantes: Aspectos y Similitudes. Revista iberoamericana de automática e informática industrial (RIAI) 2(1), 19–35.

Al-Hadithi, B.M., F. Matia y A. Jimenez (2007). Análisis de estabilidad de sistemas borrosos. Revista iberoamericana de automática e informática industrial (RIAI) 4(2), 7–25.

Albertos, P. y A. Sala (2002). Iterative Identification and Control: Advances in Theory and Applications. Springer.

Albertos, P. y A. Sala (2004a). El Control Borroso: Una Metodología Integradora. Revista iberoamericana de automática e informática industrial (RIAI) 1(2), 22–31.

Albertos, P. y A. Sala (2004b). Multivariable control systems—an engineering approach. Springer.

Albertos, P. y A. Sala (2004c). Perspectives of fuzzy control: lights and shadows. Proc. of 2nd International IEEE Conference on Intelligent Systems, 2004 1, Plenary session.

Andújar, J.M., AJ Barragán, M.E.G. Arias y M. Maestre (2007). Control borroso multivariable basado en heurística. Un caso práctico: grúa porta contenedores. Revista iberoamericana de automática e informática industrial (RIAI) 4(2), 81–89.

Apkarian, P. y R.J. Adams (1998). Advanced gain-scheduling techniques for uncertain systems. IEEE Trans. Control Syst. Techn. 6, 21–32.

Aracil, J., A. Ollero y A. Garcia-Cerezo (1989). Stability indices for the global analysis of expert control systems. Systems, Man and Cybernetics, IEEE Transactions on 19(5), 998– 1007.

Aracil, J. y F. Gordillo (2000). Stability Issues in Fuzzy Control. Physica-Verlag Heidelberg.

Ariño, C., A. Sala y J.L. Navarro (2007). Diseño de controladores en varios puntos de funcionamiento para una clase de modelos borrosos Takagi-Sugeno afines. Revista iberoamericana de automática e informática industrial (RIAI) 4(2), 98– 105.

Ariño, C. y A. Sala (2007a). Design of multipleparameterisation PDC controllers via relaxed conditions for multi-dimensional fuzzy summations. In: Proc. of Fuzz-IEEE’07. IEEE Press. London, UK. p. doi:10.1109/FUZZY.2007.4295495.

Ariño, C. y A. Sala (2007b). Relaxed LMI conditions for closed loop fuzzy systems with tensor product structure. Eng. Appl. Artif. Intell. 20(8), 1036–1046.

Baranyi, P. (2004). TP model transformation as a way to LMIbased controller design. Industrial Electronics, IEEE Transactions on 51(2), 387–400.

Bondia, J., A. Sala, J. Picó y M. A. Sainz (2006). Controller design under fuzzy pole-placement specifications: an interval arithmetic approach. IEEE Trans. on Fuzzy Systems 14(6), 822–836.

Bondia, J., A. Sala y J. Pico (2005). Possibilistic Robust Control For Fuzzy Plants: Control Performance Degradation. In: 16th IFAC World Congress. Elsevier. Praga (Rep ´ublica Ch´eca). pp. 1–6.

Boyd, S., L. El Ghaoui, E. Feron y V. Balakrishnan (1994). Linear matrix inequalities in system and control theory. Ed. SIAM. Philadelphia, USA.

Boyd, S. y L. Vandenberghe (2004). Convex Optimization. Cambridge University Press.

Burgos-Artizzu, X.P., A. Ribeiro y M. de Santos (2007). Controlador Borroso Multivariable para el Ajuste de Tratamientos en Agricultura de Precisión. Revista iberoamericana de automática e informática industrial (RIAI) 4(2), 64–71.

Chen, B., X. Liu y S. Tong (2007). Adaptive Fuzzy Output Tracking Control of MIMO Nonlinear Uncertain Systems. IEEE Trans. Fuzzy Systems 15(2), 287.

Chesi, G., A. Garulli, A. Tesi y A. Vicino (2003). Homogeneous Lyapunov functions for systems with structured uncertainties. Automatica 39(6), 1027–1035.

Díez, J.L., A. Sala y J. Luis Navarro (2006). Target-shaped possibilistic clustering applied to local-model identification. Engineering Applications of Artificial Intelligence 19(2), 201– 208.

Diez, J.L., J.L. Navarro y A. Sala (2004). Algoritmos De Agrupamiento En La Identificación De Modelos Borrosos. Rev. Iberoamericana de Automática e Informática Industrial 1, 32–41.

Díez, J.L., J.L. Navarro y A. Sala (2007). A Fuzzy Clustering Algorithm Enhancing Local Model Interpretability. Soft Computing 11, 973–983.

Driankov, D. (1996). An Introduction to Fuzzy Control. Springer.

Evsukoff, A., S. Gentil y J. Montmain (2000). Fuzzy reasoning in co-operative supervision systems. Control Engineering Practice 8(4), 389–407.

Fang, Chun-Hsiung, Yung-Sheng Liu, Shih-Wei Kau, Lin Hong y Ching-Hsiang Lee (2006). A New LMI-Based Approach to Relaxed Quadratic Stabilization of T-S Fuzzy Control Systems. IEEE Trans. Fuzzy Syst. 14, 286–397.

Feng, G. (2003). Controller synthesis of fuzzy dynamic systems based on piecewise lyapunov functions. IEEE Trans. Fuzzy Systems 11(5), 605–612.

Feng, G. (2006). A survey on analysis and design of modelbased fuzzy control systems. IEEE Trans. on Fuzzy Systems 14(5), 676–697.

Gentil, S. (2006). Artificial Intelligence for Industrial Process Supervision. Lecture Notes in Computer Science 4031, 2.

Gevers, M. (2005). Identification for control: From the early achievements to the revival of experiment design. European Journal of Control 11(4-5), 335–352.

Giarré, L., D. Bauso, P. Falugi y B. Bamieh (2006). LPV model identification for gain scheduling control: An application to rotating stall and surge control problem. Control Engineering Practice 14(4), 351–361.

Guerra, TM, A. Kruszewski, L. Vermeiren y H. Tirmant (2006). Conditions of output stabilization for nonlinear models in the Takagi–Sugeno’s form. Fuzzy Sets and Systems 157(9), 1248–1259.

Guerra, T.M. y L. Vermeiren (2004). LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the takagi-sugeno’s form. Automatica 10, 823 – 829.

Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. Prentice Hall PTR Upper Saddle River, NJ, USA.

Innocenti, B., B. López y J. Salvi (2007). A multi-agent architecture with cooperative fuzzy control for a mobile robot. Robotics and Autonomous Systems 55(12), 881–891.

Johansen, TA (2000). Computation of Lyapunov functions for smooth nonlinear systems using convex optimization. Automatica 36(11), 1617–1626.

Johansson, M., A. Rantzer y K.E. Arzen (1999). Piecewise quadratic stability of fuzzy systems. IEEE Trans. Fuzzy Systems 7, 713–722.

Khalil, H.K. (1996). Nonlinear Systems (2nd. ed.). Ed. Prentice-Hall. Upper Saddle River, New Jersey, USA.

Kosko, B. (1994). Fuzzy systems as universal approximators. Computers, IEEE Transactions on 43(11), 1329–1333.

Kruszewski, A., A. Sala, T.M. Guerra y C.V. Ariño (2009). A triangulation approach to assymptotically exact conditions for fuzzy summations. IEEE Trans. on Fuzzy Systems.

Kruszewski, A. y TM Guerra (2005). New Approaches for the Stabilization of Discrete Takagi-Sugeno Fuzzy Models. 44th IEEE Decision and Control and 2005 European Control Conf. pp. 3255–3260.

Labiod, S. y T.M. Guerra (2007). Adaptive fuzzy control of a class of SISO nonaffine nonlinear systems. Fuzzy Sets and Systems 158(10), 1126–1137.

Lam, HK y FHF Leung (2007). Fuzzy controller with stability and performance rules for nonlinear systems. Fuzzy Sets and Systems 158(2), 147–163.

Löfberg, J. (2004). Yalmip: A toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference. Taipei, Taiwan.

Liu, X. y Q. Zhang (2003a). Approaches to quadratic stability conditions and H∞ control designs for t-s fuzzy systems. Fuzzy Systems, IEEE Transactions on 11(6), 830–839.

Liu, X. y Q. Zhang (2003b). New approaches to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI. Automatica 39(9), 1571–1582.

Lo, J.C. y M.L. Lin (2004). Observer-based robust H∞ control for fuzzy systems using two-step procedure. Fuzzy Systems, IEEE Transactions on 12(3), 350–359.

Macián, V., B.V. Tormos, A. Sala y J.C. Ramírez (2006). Fuzzy Logic-Based Expert System For Diesel Engine Oil Analysis Diagnosis. Insight 48, 462–470.

Murty, K.G. y S.N. Kabadi (1987). Some NP-complete problems in quadratic and nonlinear programming. Mathematical programming 39, 117–129.

Pedrycz, W. (1993). Fuzzy Control and Fuzzy Systems. John Wiley & Sons, Inc. New York, NY, USA.

Ruusunen, M. y K. Leiviskä (2004). Fuzzy modelling of carbon dioxide in a burning process. Control Engineering Practice 12(5), 607–614.

Sala, A. (2008). Encoding Fuzzy Possibilistic Diagnostics As A Constrained Optimisation Problem. Information Sciences 178, 4246–4263.

Sala, A., J.L. Diez, J.L. Navarro y P. Albertos (2004). Fuzzy model usage and readability in identification for control. In: Proceedings of World Automation Congress’04. Vol. 16. IEEE.

Sala, A., T.M. Guerra y R. Babuska (2005). Perspectives of fuzzy systems and control. Fuzzy Sets and Systems 156(3), 432–444.

Sala, A. y A. Esparza (2003). Reduced-order controller design via iterative identification and control. European journal of control 9(1), 105–117.

Sala, A. y C. Ariño (2006). Local Stability of Open-and Closedloop Fuzzy Systems. IEEE International Symposium on Intelligent Control, ISIC’06 pp. 2384–2389.

Sala, A. y C. Ariño (2007 a). Assymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya’s theorem. Fuzzy Sets and Systems 158(4), 2671–2686.

Sala, A. y C. Ariño (2007 b). Relaxed stability and performance conditions for takagi-sugeno fuzzy systems with knowledge on membership function overlap. IEEE Trans. SMC(B) 37(3), 727–732.

Sala, A. y C.V. Ariño (2008). Relaxed stability and performance LMI conditions for Takagi-Sugeno fuzzy systems with polynomial constraints on membership shape. IEEE Trans. Fuzzy Systems 16(5), 1328–1336.

Sala, A. y P. Albertos (1998). Fuzzy systems evaluation: The inference error approach. Systems, Man and Cybernetics, Part B, IEEE Transactions on 28(2), 268–275.

Sala, A. y P. Albertos (2001). Inference error minimisation: fuzzy modelling of ambiguous functions. Fuzzy Sets and Systems 121(1), 95–111.

Schulte, H. y H. Hahn (2004). Fuzzy state feedback gain scheduling control of servo-pneumatic actuators. Control Engineering Practice 12(5), 639–650.

Slotine, Jean-Jaques E. y Weiping Li (1991). Applied Nonlinear Control. Ed. Prentice Hall. Englewood Cliffs, New Jersey.

Sugeno, M. (1985). Industrial Applications of Fuzzy Control. Elsevier Science Inc. New York, NY, USA.

Takagi, T. y M. Sugeno (1985). Fuzzy identification of systems and its applications to modelling and control. IEEE Trans. on Systems, Man and Cybernetics 15(1), 116–132.

Tanaka, K., T. Hori y HO Wang (2003 a). A multiple Lyapunov function approach to stabilization of fuzzy control systems. Fuzzy Systems, IEEE Transactions on 11(4), 582–589.

Tanaka, K., T. Hori y H.O. Wang (2003 b). A multiple lyapunov function approach to stabilization of fuzzy control systems. IEEE Transactions on Fuzzy Systems 6, 250–265.

Tanaka, K. y H. O. Wang (2001). Fuzzy control systems design and analysis. Ed. John Wiley & Sons. New York, USA.

Tuan, HD, P. Apkarian, T.Narikiyo y Y. Yamamoto (2001). ˜ Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Trans. Fuzzy Systems 9(2), 324– 332.

Wang, L.-X. (1994). Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Ed. Prentice-Hall. New Jersey, USA.

Zadeh, L.A. (1973). Outline of a new approach to the analysis of complex systems and decision processes. 3, 28–44.

Abstract Views

389
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912