Obtención de Modelos Borrosos Interpretables de Procesos Dinámicos
Enviado: 14-09-2017
|Aceptado:
|Publicado: 11-07-2008
Descargas
Palabras clave:
identificación, agrupamiento, mínimos cuadrados, modelo borroso, interpretabilidad
Agencias de apoyo:
Resumen:
Citas:
Bezdek J. C. (1987). Pattern Recognition with Fuzzy Objective Function Algorithms. Ed. Plenum Press. New York, USA.
Box, G., Jenkins, G., (1976) Times Series Analysis: Forescasting and Control, Holden Day Inc., San Francisco, USA.
Chen, W., and Saif, M. (2005). A Novel Fuzzy System with Dynamic Rule Base, IEEE Trans. Fuzzy Systems, vol. 13, (5), pp.569-582.
Contreras, J., Misa, R., Paz, J., (2006). Building Interpretable Fuzzy Systems: a New Approach to Fuzzy Modeling. In proceedings of Electronics, Robotics and Automotive Mechanics Conference CERMA. IEEE Computer Society. pp.: 172-178
Díez J. L., Navarro J. L., Sala A. (2004). Algoritmos de Agrupamiento en la Identificación de Modelos Borrosos. RIAI: Revista Iberoamericana de Automática e Informática Industrial, vol. 1 (2), pp. 32-41.
Espinosa, J., Vandewalle, J. (2000), Constructing Fuzzy Models with Linguistic Integrity from Numerical Data-Afreli Algorithm, IEEE Trans. Fuzzy Systems, vol. 8(5), pp. 591 – 600.
Espinosa, J., Vandewalle, J. (2005), Wertz, V, Fuzzy Logic, Identification and Predictive Control. Springer. USA.
García-Sanz, M., Elso, J., Egaña, I. (2006), Control de Ángulo de Cabeceo de un Helicóptero como Benchmark de Diseño de Controladores, RIAI, vol. 3(2), pp.111-116.
Gaweda, A., Zurada, J. (2003), Data-Driven Lingustic Modeling Using Relational Fuzzy Rules, IEEE Trans. Fuzzy System, vol. 11(1), pp.121-134.
Guillaume, S., Charnomordic, B. (2004), Generating an Interpretable Family of Fuzzy Partitions from Data, IEEE Trans. Fuzzy Systems, vol. 12(3), pp. 324 – 335.
Gustafson E. E., Kessel W. C. (1979). Fuzzy Clustering with a Fuzzy Covariance Matrix. In Proceedings of the IEEE CDC, pp. 503 – 516.
Joo M.G., and Lee, J.S. (2002) Universal Approximation by Hierarchical Fuzzy Systems with Constraints on the Fuzzy Rules, Fuzzy Sets and Systems, vol. 130(2), pp 175-188.
Joo M.G., and Lee, J.S. (2005). A Class of Hierarchical Fuzzy Systems with Constraints on the Fuzzy Rules, IEEE Trans. Fuzzy Systems, vol. 13(2), pp.194-203, 2005.
Kim, E., Park, M, Kim, S. (1998), A Transformed Input-Domain Approach to Fuzzy Modeling, IEEE Trans. Fuzzy Systems, vol. 6(4), pp. 596-604.
Nauck, D., Kruse, R., (1995). Nefclass - a Neuro-Fuzzy Approach for the Classification of Data, In Proceedings of the Symposium on Applied Computing.
Nauck, D., Kruse, R. (1999), Neuro-Fuzzy Systems for Function Approximation. Fuzzy Sets and System, vol. 101(2), pp. 261-271.
Paiva, R. P., Dourado, A. (2004), Interpretability and Learning in Neuro-Fuzzy Systems, Fuzzy Sets and System, vol. 147(1), pp. 17-38. 2004.
Pedrycz, W. (1994) Why Triangular Membership Functions?, IEEE Trans. Fuzzy Sets and System, vol. 6 4(1), pp.21-30, 1994
Sala, A. (1998). Validación y Aproximación Funcional en Sistemas de Control Basados en Lógica Borrosa. Universidad Politécnica de Valencia. Tesis Doctoral, España.
Sala, A., Albertos, P. (2001), Inference Error Minimisation: Fuzzy Modelling of Ambiguous Functions. Fuzzy Sets and Systems, vol. 121(1), pp. 95 – 111.
Sugeno, M., Yasukawa, T. (1993), A Fuzzy Logic Based Approach to Qualitative Modeling. Transactions on Fuzzy Systems, vol. 1(1), pp. 7-31. 1993
Wang, LX, Langari, R. (1995), Building Sugeno- Type Models Using Fuzzy Discretization and Orthogonal Parameter Estimation Techniques, IEEE Transactions on Fuzzy Systems, vol. 3(4), pp. 454-458.
Wang, LX, Mendel, J.M. (1992), Generating Fuzzy Rules by Learning from Examples, IEEE Transactions on Systems Man and Cybernetics, vol. 22(6), pp. 1414-1427.