Experiencias en el desarrollo de una aplicación robótica con control de fuerza para taladrado de huesos

J.C. Fraile, J. Pérez-Turiel, J.L. González-Sánchez, J. López-Cruzado, J.L. Rodríguez

Resumen

En los sistemas de cirugía ortopédica asistida por ordenador (CAOS), el taladrado del hueso en la reparación de fracturas de huesos largos (para estabilizarlos con placas, clavos o tornillos) es una tarea compleja que el cirujano debe realizar con gran precisión, evitando el calentamiento excesivo del tejido óseo. En la cirugía asistida por robots, se han utilizado principalmente robots industriales (Robodoc, Caspar, Crigos) adaptados a ambientes quirúrgicos para ayudar al cirujano en esta tarea. En esta tarea de taladrado de huesos es necesario tener en cuenta varios factores: temperatura del hueso, velocidades de giro y avance de la herramienta de taladrado y fuerzas y pares que actúan sobre el hueso durante su taladrado. Es fundamental el desarrollo de algoritmos de control del robot manipulador para garantizar que las distintas variables que intervienen en el proceso de taladrado tomen los valores adecuados, bajo el control del cirujano, y así lograr una mayor calidad y precisión en la tarea quirúrgica de taladrado del hueso. Desafortunadamente, la mayoría de los robots industriales tienen una arquitectura de control propietaria que impide una fácil implantación de algoritmos de control externos basados en realimentación multisensorial (visión, fuerza). En este artículo se presenta el diseño de una arquitectura de control distribuido y abierto, que se ha implantado sobre el controlador de un robot Staubli. En ella se ha desarrollado una estrategia de control basada en realimentación de fuerza, que permite al cirujano realizar la tarea quirúrgica de taladrado del hueso con elevada precisión. Durante el taladrado con el robot, las fuerzas y pares que actúan sobre el hueso son medidos y utilizados para controlar la velocidad de avance de la herramienta de taladrado, y para controlar la fuerza aplicada al hueso. Se han obtenido resultados experimentales en condiciones de laboratorio con el manipulador equipado con un sensor de fuerza/par y una herramienta para taladrado quirúrgico.

Palabras clave

sensor de fuerza/par; control de fuerza; manipulador quirúrgico; cooperación cirujano-manipulador

Texto completo:

PDF

Referencias

Blomdell A. et al. (2005) Extending an industrial robot controller: implementation and applications of a fast open sensor interface. IEEE Robotics & Automation Magazine, 12 (3), 85- 94.

Bzostek A. et al. (2000) Distributed Modular Computer-Integrated Surgical Robotic Systems. Implementation using Modular Software and Networked Systems. MICCAI, 969-78.

Brandt G. et al. (1997) A compact robot for image guided orthopaedic surgery. Proc. CURMedMCRAS 97, 779-788. Lectures Notes in computer science series, 1205. Springer Verlag.

Bzostek A. et al. (2000) Distributed Modular Computer-Integrated Surgical Robotic Systems: Implementation using Modular Software and Networked Systems; Proc. of Medical Image Computing and Computer Assisted Interventions, Pittsburgh, PA, USA.

Caccavale, F. et al. (2005) Integration for Next Generation. Embedding Force Control into Industrial Robots. IEEE Robotics & Automation Magazine, 12 (3), 53- 64.

Davidson S.R., James D.F. (2003) Drilling in bone: modeling heat generation and temperature distribution, J. Biomech. Eng., 125, 305-314.

Degoulange E., Dauchez P. Pierrot F. (1993) Determination of a force control law for an industrial robot in contact with a rigid environment. Proc. Int. Conf. on Systems, Man and Cybernetics, 2, 270 – 275.

Duchemin G. et al. (2004) Medically safe and sound. IEEE Robotics and automation magazine, vol. XX, 46-55.

Duchemin G. et al. (2005) A hybrid position/force control approach for identification of deformation models of skin and underlying tissues. IEEE Tran. On Biomedical Engineering. 52 (2), 160-170.

EMC: Enhanced Machine Controller Project. (2006) http://www.linuxcnc.org/.

Fiedler P., Schilb C. (2000) Genesis System Group. Open Architecture Robot Controllers and Workcell Integration.

Fraile J.C. et al. (2007) Experiments on bone drilling control with a robot arm for computer integrated surgery. Proc. CAOS 2007 International – Computer Assisted Orthopaedic Surgery, Heidelberg, 157-162.

González, J.L., et al. (2004) Desarrollo de un controlador abierto para un robot industrial tipo SCARA. RIAI: Revista Iberoamericana de Automática e Informática Industrial. 1 (1), 44-49.

Hillery M.T., Shuaib I. (1999) Temperature effects in the drilling of human and bovine bone. Journal of Materials Processing Technology 92-93, 302-308.

Hogan N. (1985) Impedance control: And approach to manipulation. Tran. ASME. Journal of dynamics systems, measurement and control, 107, 1-24.

IEEE Std 1471-2000. (2000) Recommended Practice for Architectural Description of Software-Intensive Systems. The Institute of Electric and Electronic Engineers.

ISO/IEC TR 10000-1. (1998) Information technology - Framework and taxonomy of International Standarized Profiles. Part 1: General principles and documentation framework.

ISO FDIS 15745-1. (2002). Industrial automation systems and integration - Open systems application integration framework. Part 1: Generic reference description.

Jacopek M. et al. (2003) The hands-on orthopaedic robot Acrobot: Early clinical trials of total knee replacement surgery. IEEE Tran. on Robotics and Automation, 15, 902-911.

Kahmen A. (2001) Open Controller Enabled by an Advanced real time Network. OCEAN Consortium.

Kalantar S. (2003) YAOC-13: A generic open system architecture and software framework for general motion control and industrial robotic systems. University of Tehran.

Kazandides P. et al. (1992) Force sensing and control for a surgical robot. Proc. IEEE ICRA, 612-617

Kazandides P. (1999) Robot assisted surgery: The Robodoc experience. 30th Symp. on robotics, pp. 281-286. Tokyo, Japan.

Korb W. et al. (2003) Development and First Patient Trial of a Surgical Robot for Complex Trajectory Milling. Comp Aid Surg. 8, 248-257

Lundskog J. (1972) Heat and bone tissue. An experimental invetigation of the thermal properties of bone tissue and threshold levels for thermal injury. Thesis, University of Göteborg.

Murariu A.M. et al. (2004) The effects of drilling on cortical temperatures. Proc. Biomaterials and medical devices components – BiomMedD 2004: Bucarest, 133-137.

Murariu M.A. et al (2005) Heat generation and temperature distibution in human cortical bone drilling. Proc. CAOS 2005 International – Computer Assisted Orthopaedic Surgery, Helsinki, 329-334.

OMAC Users group. (2004) http://www.omac.org/

Ong F.R. et al. (1999) Detection of drill bit breakthrough for the enhancement of safety in mechatronic assisted orthopaedic drilling. Mechatronics, 9, 565-588.

Open Group, (2001) The Open Group Architectural Framework V.7.

Ortamaier T. et al. (2006) Experiments on robotassisted navigated drilling and milling of bones for pedicle screw placement. International Journal of Medical Robotics and Computer Assisted Surgery, 2, 350-363.

OSACA Project. (1996) http://www.osaca.org/.

Perdereau V., Drouin M. (1993) A new scheme for hybrid force/position control. Robotica, 11, 453-464.

Pérez-Turiel J. et al (2004) Application of the SIROCO framework for the specification of a CAOS architecture. Proc. CAOS 2004 International – Computer Assisted Orthopaedic Surgery, Chicago (USA), 95-99.

Pernozzoli J.B., et al. (2000) A real-time CORBA based system architecture for robot assisted craniofacial surgery. MMVR.

Peters H., Raczkowsky J. Woern, H. (2005) Approach to an architecture for a generic computer integrated surgery system. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2455- 2460.

Pujas A. et al. (1993) Hybrid position/force control: Task description and control scheme determination for a real implementation. Proc. IROS 93, Yokohama, Japón. 841-846.

Salisbury K. (1980) Active stiffness control of a manipulator in cartesian coordinates. Proc. 19th IEEE Conf. on decision and control, Alburquerque. 95-100.

Sallinen M. (2004) Hardware and software architecture for rapid and safety use of robots systems. 1st IFAC Symposium on Telematics Applications in Automation and Robotics. Helsinki, 143 - 147.

Schauer D., Hein A., Leuth T.C. (2003) Dynamic force control for aminiaturised medical robot system. Proc. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, 1090- 1095.

Taylor R.H. (2001) Computer-Integrated Surgery: Coupling Information to Action in 21st Century Medicine. ICRA 2001, Plenary Speech.

Taylor R.H., Stoianovic D. (2003) Medical robotics in computer integrated surgery. IEEE Tran. on Robotics and Automation, 19(5),765-781.

Volpe R., Khosla P. (1993) A theorical and experimental investigation of explicit force control strategies for manipulators. Proc. IEEE Transaction on Automatic Control, 38 (11), 1624-1650.

Wiggins K.L., Malkin S. (1976) Drilling of Bone. Journal of Biomechanics, 9, 553-559.

Yen J. (2000) Open, modular architecture controls and the impact of softSERCANS. General Motors Powertrain.

Yoshikawa T. (2000) Force control of robots manipulators. Proc. IEEE ICRA, San Francisco, CA. 220-226.

Abstract Views

1455
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912