La silla robótica Sena. Un enfoque basado en la interacción hombre-máquina

J. González, C. Galindo, J. A. Fernández, J.L. Blanco, A. Muñoz, V. Arévalo

Resumen

El número de personas con problemas de movilidad está creciendo en los últimos años en los países desarrollados, como consecuencia de una mayor esperanza de vida y del gran número de accidentes de tráfico. La posibilidad de transferir y adaptar resultados del campo de la robótica a este colectivo resultaría de enorme interés toda vez que repercuta en una mejor calidad de vida y una mayor integración social. En este artículo presentamos la silla de ruedas robotizada SENA, que es el resultado de un proyecto de investigación desarrollado en el Dpto. de Ingeniería de Sistemas y Automática de la Universidad de Málaga (España). SENA se basa en una silla eléctrica comercial a la que se ha integrado una serie de sensores y dispositivos que son gestionados mediante un ordenador portátil. Este prototipo se caracteriza por su capacidad para la navegación autónoma en espacios interiores, así como por su facilidad para interactuar y cooperar con el usuario o personas del entorno gracias, entre otros, a una arquitectura software desarrollada específicamente para robots asistentes. En este artículo se describen los principales elementos hardware y software de SENA, se ilustra su funcionamiento y se exponen algunas de las reflexiones y conclusiones derivadas del desarrollo de este prototipo.

Palabras clave

Robots móviles; Robots asistentes; Integración Humano-Robot

Texto completo:

PDF

Referencias

Aracil, R., C. Balaguer and M. Armada (2008). Robots de servicio. Revista Iberoamericana de Automática e Informática Industrial, (en este número).

Babel (2006). Babel development system homepage. Acceso en Noviembre del 2006.

Bailey, M., A. Chanler, B. Maxwell, M. Micire, K. Tsui and H. Yanco (2007). Development of vision-based navigation for a robotic wheelchair. In: ICORR 2007. IEEE 10th International Conference onRehabilitation Robotics.

Balcells, A.C. and J. Abascal (1998). Tetranauta: A wheelchair controller for users with very severe mobility restrictions. In: 3rd European Conf. on Tech. for Inclusive Design and Equality. Helsinki, Finland.

Blanco, J.L., J. González and J.A. Fernández Madrigal (2008a). Extending obstacle avoidance methods through multiple parameterspace transformations. Autonomous Robots (1), 29–48.

Blanco, J.L., J.A. Fernández-Madrigal and J. González (2008b). A novel measure of uncertainty for mobile robot slam with raoblackwellized particle filters. The International Journal of Robotics Research (IJRR) (1), 73–89.

Blanco, J.L., J.A. Fernández-Madrigal and J. González (2008c). Towards a unified bayesian approach to hybrid metric-topological slam. IEEE Transactions on Robotics (To appear in 2008).

Ceres, R., J.L. Pons, L. Calderón and J.C. Moreno (2008). La robótica en la discapacidad. desarrollo de la prótesis diestra de extremidad inferior manus-hand. Revista Iberoamericana de Automática e Informática Industrial, (en este número).

Chow, H.N. and Y. Xu (2006). Learning human navigational skill for smart wheelchair in a static cluttered route. IEEE Trans. on Industrial Electronics (4), 1350–1361.

DeLoache, J.S. (2004). Becoming symbol-minded. TRENDS in Cognitive Sciences 8(2), 66–70.

Domínguez, S., E. Zalama and J.G. García Bermejo (2008). Revista Iberoamericana de Automática e Informática Industrial, (en este número).

Dorais, G., R.P. Bonasso, D. Kortenkamp, B. Pell and D. Schreckenghost (1998). Adjustable autonomy for human-centered autonomous systems on mars. In: Proc. of the First International Conference of the Mars Society. pp. 397–420.

Fernández-Madrigal, J.A. and J. González (2001). Multi-Hierarchical Representation of LargeScale Space. Int. Series on Microprocessorbased and Intell. Systems Eng., vol 24. Kluwer Academic Publishers, Netherlands.

Fernández-Madrigal, J.A., C. Galindo and J. González (2004). Assistive navigation of a robotic wheelchair using a multihierarchical model of the environment. Integrated Computer-Aided Eng. 11, 309–322.

Fernández-Madrigal, J.A., C. Galindo, J. González, E. Cruz and A. Cruz (2007). A software engineering approach for the development of heterogeneous robotic applications. Robotics and ComputerIntegrated Manufacturing (4), 333–342.

Fioretti, S., T. Leo and S. Longhi (2000). A navigation system for increasing the autonomy and the security of powered wheelchairs. IEEE Trans. on Rehabilitation Engineering.

Fong, T.W. and C. Thorpe (2001). Vehicle teleoperation interfaces. Autonomous Robots 11(1), 09–18.

Fong, T.W. and C. Thorpe (2002). Robot as partner: Vehicle teleoperation with collaborative control. In: In Proceedings of the NRL Workshop on Multi-Robot Systems. pp. 195–202.

Galindo, C., J. González and J.A. Fernández Madrigal (2006). A control architecture for human-robot integration: Application to a robotic wheelchair. IEEE Transaction on Systems, Man, and Cybernetics–Part B (5), 1053–1067.

Galindo, C., J.A. Fernández Madrigal and J. González (2004). Hierarchical task planning through world abstraction. IEEE Trans. on Robotics 20(4), 667–690.

Galindo, C., J.A. Fernández-Madrigal and J. González (2007). Multiple Abstraction Hierarchies for Mobile Robot Operation in Large Environments. Studies in Computational Intelligence, Vol. 68. Springer Verlag.

Goetz, J. and S. Kiesler (2002). Cooperation with a robotic assistant. In: CHI ’02: Extended abstracts on Human factors in computing systems. ACM Press. New York, NY, USA. pp. 578–579.

Harnand, S. (1987). Psychological and Cognitive Aspects of Categorical Perception: A Critical Overview. Harnand S. (ed.), New York, Cambridge University Press, Chapter 1.

Hirtle, S.C. and J. Jonides (1985). Evidence of hierarchies in cognitive maps. Memory and Cognition 13(3), 208–217.

Hoyer, H., R. Hoelper, U. Borgolte, C. B¨uhler, H. Heck, W. Humann, I. Craig, R. Valleggi and A.M. Sabatini (1995). The omni wheelchair with high manoeuvrability and navigational intelligence. In: 2nd TIDE Congress in Rehabilitation Technology. Brussels, Belgium.

Jörg, H. and N. Bernhard (2001). The ff planning system: Fast plan generation through heuristic search. J. of Art. Intell. Research 14, 253– 302.

Khatib, O. (2002). Human-centered robotics and haptic interaction: From assistance to surgery, the emerging applications. In: Third International Workshop on Robot Motion and Control. pp. 137–139.

Kuipers, B.J. (1983). The Cognitive Map: Could it Have Been Any Other Way? Spatial Orientation: Theory, Research, and Applications. Picks H.L. and Acredolo L.P and New York, Plenum Press.

Kuruparan, J., T. Jayanthan, V. Ratheeskanth, S. Denixavier and S.R. Munasinghe (2006). Semiautonomous low cost wheelchair for elderly and disabled people. In: ICIA 2006. International Conference onInformation and Automation, 2006.

Levine, S., D. Bell, L. Jaros, R. Simpson, Y. Koren and J. Borenstein (1999). The navchair assistive wheelchair navigation system. IEEE Transactions on Rehabilitation Engineering 7(4), 443–451.

Mazo, M. and the Research Group of the SIAMO Project (2001). An integral system for assisted mobility. IEEE Robotics and Automation Magazine.

Morioka, K., J.H. Lee and H. Hashimoto (2002). Human centered robotics in intelligent space. In: In Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC.

Prassler, E., J. Scholz and P. Fiorini (2001). A robotic wheelchair for crowded public environments. IEEE Robotics and Automation Magazine.

Scholtz, J. (2003). Theory and evaluation of human-robot interaction. 36th International Conference on System Sciences, Hawai. pp. 1– 10.

Tahboub, K.A. (2001). A semi-autonomous reactive control architecture. Intelligent Robotics Systems 32(4), 445–459.

Abstract Views

647
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912