Desarrollo de una librería de componentes en ecosimpro para la operación de plantas de procesamiento térmico de alimentos

Carlos Vilas, Míriam R. García, Julio R. Banga, Antonio A. Alonso

Resumen

En este trabajo se presenta una librería de unidades de operación en EcosimPro para la simulación, optimización y control de procesos térmicos en la industria alimentaria. Las plantas de procesamiento de alimentos son buenos ejemplos de sistemas híbridos donde las dinámicas continuas no lineales están acopladas con eventos discretos. El entorno EcosimPro permite trabajar con dichos sistemas de forma eficiente e incorpora una interfaz gráfica de usuario (EcoDiagram) que facilita el manejo de modelos matemáticos complejos a los usuarios no expertos. Para la programación de dichos modelos en el entorno EcosimPro se ha seguido el paradigma de la programación orientada a objetos (POO) que incluye características como la reutilización, herencia, abstracción o encapsulamiento. La librería de componentes se puede utilizar, por ejemplo, para analizar el efecto de tecnologías alternativas en la producción o para diseñar nuevas políticas de operación en el caso de condiciones de suministro fluctuantes. Aunque este trabajo se centra en procesos de la industria conservera, se pueden añadir otras unidades para la simulación de procesos como la pasteurización o secado sin necesidad de modificar los componentes ya existentes. Los modelos han sido validados utilizando una planta piloto instalada en el IIM-CSIC aunque pueden ser aplicados a otras con diferentes especificaciones. Finalmente, algunas de las ventajas de disponer de esta librería de componentes se ilustran en una serie de ejemplos de uso.

Palabras clave

Sistemas Híbridos; Simulación Dinámica; Procesamiento Térmico de Alimentos; Entorno de Simulación Amigable

Texto completo:

pdf

Referencias

Alonso, A. A. (1993). Desarrollo de Estrategias de Control Avanzado para el Procesamiento Tèrmico de Alimentos en Unidades Discontinuas. PhD thesis. Universidad de Santiago de Compostela, España.

Alonso, A. A., J. R. Banga y R. I. P. Martin (1998). Modeling and adaptive control for batch sterilization. Compututers & Chemical Engineering 22(3), 445–458.

Alonso, A. A., J. R. Banga y R. Perez-Martín (1997). A complete dynamic model for the thermal processing of bioproducts in batch units and its application to controller design. Chemical Engineering Science 52(8), 1307– 1322.

Åström, K. J. y R. D. Bell (2000). Drum-boiler dynamics. Automatica 36(3), 363–378.

Ball, C. 0. y F. C. W. Olson (1957). Sterilization in food technology. McGraw-Hill. New York.

Balsa-Canto, E., A. A. Alonso y J. R. Banga (2002). A novel, efficient and reliable method for thermal process design and optimization. Part I: Theory. Journal of Food Engineering 52(3), 227–234.

Banga, J. R., A. A. Alonso, J. M. Gallardo y R. P. Martín (1993). Kinetics of thermaldegradation of thiamine and surface color in canned tunna. Zeitschrift fur LebensmittelUntersuchung Und-Forschung 197(2), 121– 131.

Banga, J. R., E. Balsa-Canto, C.G. Moles y A. A. Alonso (2003). Improving food processing using modern optimization methods. Trends in Food Science and Technology 14(4), 131–144.

Banga, J. R., R. P. Martín, J. M. Gallardo y J. J. Casares (1991). Optimization of thermal processing of conduction-heated canned foods: Study of several objective functions.. Journal of Food Engineering 14(1), 25–51.

Barreiro, J.A., C.R. Perez y C. Guariguata (1984). Optimization of energy consumption during the heat processing of canned foods. Journal of Food Engineering 3, 27–37.

Bimbenet, J. J., H. Schubert y G. Trystram (2007). Advances in research in food process engineering as presented at ICEF 9. Journal of Food Engineering 78(2), 390–404.

Bird, R. B., W.E. Stewart y E.N. Lightfoot (1964). Fenómenos de Transporte. Reverté. Barcelona, España.

Bruin, S. y Th. R. G. Jongen (2003). Food process engineering: The last 25 years and challenges ahead. Comprehensive Reviews in Food Science and Food Safety 2(2), 42–81.

Casp, A. y J. Abril (1999). Procesos de Conservación de Alimentos. Ed. A. Madrid Vicente, Ed. Mundi-Prensa.

Chandra, P. K. y R. P. Singh (1995). Applied Numerical Methods for Food and Agricultural Engineers. CRC Press Inc. Florida, USA.

Charm, S. E. (1971). The Fundamentals of Food Engineering. 2nd ed. Avi Publishing, Westport.

Datta, A. K. (2002). Computational Techniques in Food Engineering. Chap. Enabling Computer-Aided Food Process Engineering: Status and Needs, pp. 3–14. International Center for Numerical Methods in Engineering (CIMNE), Barcelona.

Datta, A. K. y R. C. Anantheswaran (2001). Handbook of Microwave Technology for Food Applications. Marcel Dekker Ltd. 270 Madison Avenue, New York.

Earle, R. L. (1966). Unit Operations in Food Processing. 1st ed. Pergamon Press, Oxford.

Fryer, P. (1994). Mathematical-models in foodprocessing. Chemistry & industry 13, 515– 518.

Fryer, P. y Z. Li (1993). Electrical-resistance heating of foods. Trends in Food Science & Technology 4(11), 364–369.

Garcia, C. E. y M. Morari (1982). Internal model control-1. a unifying review and some new results. Industrial & Engineering Chemistry Process Design and Development 21(2), 308– 323.

Morari, M. y E. Zafiriou (1989). Robust process control. Prentice-Hall, New Jersey.

Ogunnaike, B. A. y W. H. Ray (1994). Process dynamics, modelling, and control. Oxford University Press, Inc.

Ötles, S. y A. Önal (2004). Computer-aided engineering softwares in the food industry. Journal of Food Engineering 65(2), 311–315.

Reddy, J. N. (1993). An Introduction to the Finite Element Method. 2nd ed. McGraw-Hill.

Rivera, D. E., M. Morari y S. Skogestad (1986). Internal model control. 4. pid controller design. Industrial & Engineering Chemestry Process Design and Development 25(1), 252– 265.

Schiesser, W. E. (1991). The Numerical Method of Lines. Academic Press, New York.

Smith, C. A. y A. B. Corripio (1985). Principles and practice of automatic process control. John Wiley & Sons Inc.

Smith, J.M., H.C. Van Ness y M.M. Abbott (1997). Introducción a la Termodinámica en Ingeniería Química. McGraw-Hill. México.

Teixeira, A. A., J. R. Dixon, J. W. Zahradnik y G. E. Zinsmeister (1969a). Computer determination of spore survival distributions in thermally-processed conductionheated foods. Food Technology 23(3), 78.

Teixeira, A. A., J. R. Dixon, J. W. Zahradnik y G. E. Zinsmeister (1969 b). Computer optimization of nutrient retention in thermal processing of conduction-heated foods. Food Technology 23(6), 845.

Tijskens, L. M. M., M. L. A. T. M. Hertog y B. M. Nicolaï (2001). Food process modeling . Woodhead Pub. Lim. UK.

Uno, J. I. y K. I. Hayakawa (1980). Correction factor of come-up heating based on criticalpoint in a cylindrical can of heat-conduction food. Journal of Food Science 45(4), 853–859.

Vilas, C., M. R. García, J. R. Banga y A. A. Alonso (2006). Stabilization of inhomogeneous patterns in a diffusion-reaction system under structural and parametric uncertainties. Journal of Theoretical Biology 241(2), 295–306.

Wang, L. J. y D. W. Sun (2003). Recent developments in numerical modelling of heating and cooling processes in the food industry - a review. Trends in Food Science & Technology 14(10), 408–423.

Abstract Views

408
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912