Diseño disipativo de observadores para sistemas no lineales discontinuos o multivaluados

M. Osorio, J. A. Moreno

Resumen

En este artículo se describe la aplicación, a sistemas discontinuos o multivaluados, de una metodología de diseño de observadores basada en la disipatividad, por medio del uso de la teoría de inclusiones diferenciales y de una generalización del teorema del círculo. Los sistemas susceptibles de ser tratados por medio de este método son aquellos que pueden ser expresados en la forma de Lur’e, y en los que se permite la inclusión de no linealidades discontinuas o multivaluadas, y en general no Lipschitz. El método presentado elimina restricciones que otros métodos imponen en cuanto a la monotonía y la igualdad de número de entradas y salidas de las no linealidades permitidas.

Palabras clave

Sistemas no lineales; Observadores no lineales; Disipatividad; Mapeos Discontinuos; Mapeos Multivaluados

Texto completo:

pdf

Referencias

Alessandri, A. and P. Coletta (2003). Design of observers for switched discrete time linear systems. In: Proceedings of the American Control Conference. pp. 2785–2790.

Alessandri, A., M. Baglietto and G. Battistelli (2007). Design of observers with commutation-dependent gains for linear switching systems. In: Proceedings of American Control Conference. pp. 2090–2095.

Arcak, M. and P. Kokotovic (2001). Nonlinear observers: a circle criterion design and robustness analysis. Automatica 37(12), 1923–1930.

Aubin, J. P. and A. Cellina (1984). Differential Inclusions; Set-Valued Maps and Viability Theory. Springer-Verlag. Berlin.

Bacciotti, A. and L. Rosier (2001). Liapunov Functions and Stability in Control Theory. Vol. 267 of Lecture Notes in Control and Information Sciences. Springer-Verlag. London.

Boizot, N. and E. Busvelle (2007). Nonlinear Observers and Applications. Chap. AdaptiveGain Observers and Applications, pp. 71–112. Number 363 In: Lecture Notes in Control and Information Sciences. Springer.

Davila, J., L. Fridman and A. Levant (2005). Second-order sliding-modes observer for mechanical systems. IEEE Transactions on Automatic Control 50(11), 1785–1789.

Davila, J., L. Fridman and A. Poznyak (2006). Observation and identification of mechanical systems via second order sliding modes. International Journal of Control 79(10), 1251– 1262.

Deimling, K. (1992). Multivalued Differential Equations. Gruyer. Berlin.

Dontchev, A. and F. Lempio (1992). Difference methods for differential inclusions: A survey. SIAM Review 34, 263–294.

Drakunov, S. V. and V. I. Utkin (1995). Slidingmode observers tutorials. In: Proceedings of 34 Conference on Decision and Control. New Orleans.

Filippov, A. F. (1988). Differential Equations with Discontinuous Righthand side. Mathematics and its Applications (Soviet Series). Kluwer. Dordrecht, The Netherlands.

Gauthier, J. P., H. Hammouri and S. Othman (1992). A simple observer for nonlinear systems. Applications to bioreactors. IEEE Trans. Automatic Control 37, 875–880.

Haskara, I., Ü. Özgünner and V. Utkin (1998). On sliding mode observers via equivalent control approach. International Journal of Control 71, 1051–1067.

Heemels, W. P., A. L. Juloski and B. Brogliato (2005). Observer design for lur’e systems with monotonic multivalued mappings. In: Preprints of the 16th IFAC World Congress (IFAC, Ed.). IFAC. Prague, Czech Republic.

Hill, D. J. and P. J. Moylan (1980). Dissipative dynamical systems: Basic input-output and state properties. Journal of the Franklin Institute 309, 327–357.

Juloski, A. L. (2004). Observer Design and Identification Methods for Hybrid Systems: Theory and Experiments. PhD thesis. Eindhoven University of Thechnology.

Juloski, A., N. Mihajlovic, W. Heemels, N. Van de Wouw and H.Nijmeijer (2006). Observer de- ˜ sign for an experimental rotor system with discontinuous friction. In: Proceedings of the 2006 American Control Conference. ACC. Minneapolis, Jun. 14-16. pp. 2886–2891.

Juloski, A., W. Heemels and S. Weiland (2002). Observer design for a class of piece-wise affine systems. In: Proceedings of the Conference on Decision and Control. pp. 2606–2611.

Juloski, A., W. Heemels and S. Weiland (2007). Observer design for a class of piecewise linear systems. Int. J. Robust Nonlinear Control 17, 1387–1404.

Khalil, H. K. (1999). High-gain observers in nonlinear feedback control. In: New Directions in Nonlinear Observer Design (H.Nijmeijer and ˜ T.I. Fossen, Eds.). pp. 249–268. Number 244 In: Lecture notes in control and information sciences. Springer–Verlag. London.

Khalil, H. K. (2002). Nonlinear Systems. 3rd. ed. Prentice–Hall. Upsaddle River, New Jersey.

Moreno, J. A. (2004). Observer design for nonlinear systems: A dissipative approach. In: Proceedings of the 2nd IFAC Symposium on System, Structure and Control SSSC2004. IFAC. Oaxaca, Mexico, Dec. 8-10, 2004. pp. 735– 740.

Moreno, J. A. (2005). Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems. Chap. Aproximate Observer Error Linearizaton by Dissipativity Methods, pp. 35–51. Number 322 In: Lecture Notes in Control and Information Sciences. SpringerVerlag. Berlin.

Moreno, J. A. (2006). A separation property of dissipative observers for nonlinear systems. In: Proceedings of the 45th IEEE Conference on Decision and Control (CDC2006). IEEE. San Diego. pp. 1647–1652.

Teel, A. R., R. G. Sanfelice, R. l. Goebel and Ch. Cai (2006). Workshop on robust hybrid systems: Theory and applications. In: Proceedings of 45th Conference on Decision and Control. IEEE. San Diego, Dec. 12-15.

Thau, F. E. (1973). Observing the state of nonlinear dynamic systems. Int J. Control 17, 471– 479.

Van der Schaft, A. (2000). L2-Gain and Passivity Techniques in Nonlinear Control. 2nd. ed.. Springer-Verlag. London.

Vargas, A. and J. Moreno (2005). Approximate high gain observers for non-lipschitz observability form. International Journal of Control 78, 247–253.

Willems, J. C. (1972a). Dissipative dynamical systems, part I: General theory. Archive for Rational Mechanics and Analysis 45, 321– 351.

Willems, J. C. (1972b). Dissipative dynamical systems, part II: Linear systems with quadratic supply rates. Archive for Rational Mechanics and Analysis 45, 352–393.

Xiong, Y. and M. Saif (2001). Sliding mode observer for nonlinear uncertain systems. IEEE Transactions on Automatic Control 46(12), 2012–2017.

Yakubovich, V. A., G. A. Leonov and A. Kh. Gelig (2004). Stability of Stationary Sets in Control Systems with Discontinuous Nonlinearities. Vol. 14 of Series on Stability, Vibration and Control of Systems. World Scientific. Singapore.

Abstract Views

331
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912