Introducción al Control Fraccionario

Blas M. Vinagre, Concepción A. Monje

Resumen

Este trabajo pretende ser una introducción y una invitación al Control Fraccionario, entendido éste como el conjunto de aplicaciones del Cálculo Fraccionario en Teoría de Control. Quiere servir para que los miembros de la comunidad de control perciban cómo el cálculo fraccionario puede ampliar los horizontes de su disciplina. Por ello, el trabajo se ha estructurado como un libro de texto que recorre desde los fundamentos y definiciones básicas del cálculo fraccionario hasta las estrategias de implantación de controladores y filtros fraccionarios, pasando por el análisis de sistemas y el diseño de controladores. Finalmente, se hace un breve esbozo de la actualidad del control fraccionario.

Palabras clave

Cálculo fraccionario; teoría de control; realización de controladores; discretización; aproximación numérica

Texto completo:

PDF

Referencias

Adams, J.L., T.T. Hartley and C.F. Lorenzo (2006). Fractional-Order System Identification Using Complex-Order Distributions. En: Proceedings of the Second IFAC Workshopon Fractional Differentiation and Applications, Porto, Portugal.

Agrawal, O.P., J.A. Tenreiro, and J. Sabatier (Ed.) (2004). Special Issue: Fractional Derivatives and Their Applications. Nonlinear Dynamics, 38 (1-4). Kluwer Academic Publishers, Netherlands.

Ahmad, W. M. and R. El-Khazali (2001). On Frequency Response of Fractional-Order Sallen-Key Filters. En: Proceedings of the First IFAC Workshop on Fractional Differentiation and Applications, Bordeaux, France, pp. 571-573.

Ahmad, W. M., R. El-Khazali, and A. El-Wakil (2001). Fractional-Order Wien-Bridge Oscillator. Electronics Letters, 37, pp.1110.

Ahmad, W. M. and J. C. Sprott (2003). Chaos in Fractional-Order Autonomous Nonlinear Systems. Chaos, Solitons, Fractals, 16, pp. 339.

Anastasio, T. J. (1994). The Fractional-Order Dynamics of Brainstem Vestibulo-Oculomotor Neurons. Biological Cybernetics, 72, pp. 69-79.

Anastasio, T. J. (2004). Neural Control of Fractional-Order Oculomotor Dynamics. En: First IFAC Workshop on Fractional Differentiation and Its Application, Bordeaux, France, pp. 483-488.

Bagley, R. L. and R. A. Calico (1991). Fractional Order state Equations for the Control of Viscoelastically Damped Structures. Journal of Guidance, Control, and Dynamics, 14 (2), pp.304-311.

Barbosa, R.S., J.A. Tenreiro, and I.M. Ferreira (2004). Tuning of PID Controllers Based on Bode’s Ideal Transfer Function. Nonlinear Dynamics, 38 (1-4), pp. 305-321.

Bode, H. W. (1945). Network Analysis and Feedback Amplifier Design. D. Van Nostrand, Boston.

Calderón, A. J. (2003). Control Fraccionario de Convertidores Electrónicos de Potencia tipo Buck. Tesis Doctoral, Escuela de Ingenierías Industriales, Universidad de Extremadura, Badajoz.

Calderón, A. J., B. M. Vinagre, and V. Feliu (2003). Linear Fractional Order Control of a DC-DC Buck Converter. En: ECC 03: European Control Conference 2003, Cambridge, UK.

Carlson, G. E. and C. A. Halijak (1961). Simulation of the Fractional Derivative Operator and the Fractional Integral Operator. En: Proceedings of the CSSCM, 45, Kansas State U.B.

Chen, Y. Q., and K. L. Moore (2001). On Dª Type Iterative Learning Control. En: Proceedings of the 40th IEEE Conference on Decision and Control, 40, Orlando, Florida, USA, pp. 4451-4456.

Chen, Y. Q., B. M. Vinagre and I. Podlubny (2003). On Fractional Order Disturbance Observer. En: Proceedings of the 19th Biennial Conference on Mechanical Vibration and Noise, ASME Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Chicago, Illinois, USA.

Dorcak, L., I. Petráš, and I. Kostial (2000). The Modelling and Analysis of Fractional-Order Regulated Systems in the State Space. En: Proceedings of the First International Carpatian Control Conference, Podbanske, Slovak Republic, pp. 185-188.

El-Khazali, R., W. Ahmad, and Y. Al-Assaf (2004). Sliding Mode Control of Fractional Chaotic System. In: First IFAC Workshop on Fractional Differentiation and Its Application, Bordeaux, France, pp. 495-500.

Feliu, V., B. M. Vinagre, and C. A. Monje (2005). Fractional Control of a Single-Link Flexible Manipulator. En: Proceedings of the ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Long Beach, California, USA.

Fonseca, N. M., and J. A. Tenreiro (2003). Fractional-Order Hybrid Control of Robotic Manipulators. In: Proceedings of the 11th International Conference on Advanced Robotics, Coimbra, Portugal, pp. 393-398.

Fujii, H. A., K. Nakajima, and K. Matsuda (1996). Wave Approach for Control of Orientation and Vibration of a Flexible Structure. Journal of Guidance, Control, and Dynamics, 19 (3), pp. 578-583.

Gorenflo, R. and F. Mainardi (2004). Power Laws, Random Walks, and Fractional Diffusion Processes as Well-Scaled Refinement Limits. Fractional Differentiation and Its Applications (A. Le Mehauté, J.A. Tenreiro, J.C. Trigeassou, and J. Sabatier (Ed.)). Ubooks, Germany, pp. 497-513.

Hartley, T.T., C.F. Lorenzo, and H.K. Qammar (1995). Chaos in a Fractional Order Chua System.IEEE Transactions on Circuits and Systems I, 42 (8), pp. 485-490.

Hilfer, R. (Ed.) (2000). Fractional Calculus in Physics. World Scientific, Singapore.

Lanusse, P., T. Poinot, O. Cois, A. Oustaloup, and J. Trigeassou (2003). Tuning of an Active Suspension System Using a Fractional Controller and a Closed-Loop Tuning. In: Proceedings of the 11th International Conference on Advanced Robotics, Coimbra, pp. 258-263.

Lazarevic, M. P. (2004). PDα-Type Iterative Learning Control for Fractional LTI System. En: Proceedings of the 16th International Congress of Chemical and Process Engineering, Prague, Czech Republic.

Le Mehauté, A., J.A. Tenreiro, J.C. Trigeas-sou, and J. Sabatier (Ed.) (2005). Fractional Differentiation and Its Applications. Ubooks, Germany.

Li, C. G. and G. R. Chen (2004). Chaos and Hyperchaos in the Fractional Order Rossler Equations. Physica A, 341, pp. 55.

Li, C. P. and G. J. Peng (2004). Chaos in Chen’s System with a Fractional Order. Solitons and Fractals, 22, pp. 443.

Liang, J., Y. Q. Chen, B. M. Vinagre, and I. Podlubny (2005). Identifying Diffusion-Wave Constant, Fractional Order And Boundary Profile of a Time-Fractional Diffusion-Wave Equation from Noisy Boundary Measurements.Fraction-al Differentiation and Its Applications (A. LeMehauté, J. A. Tenreiro, J. C. Trigeassou, andJ. Sabatier (Ed.)). Ubooks, Germany, pp. 517-532.

Ma, C. (2004). Fractional Order Control and Its Applications in Motion Control. Ph.D. Thesis, Tokyo, Japan.

Malti, R., M. Aoun, O. Cois, A. Oustaloup, and F. Levron (2003). H2 Norm of Fractional DifferentialSystems.En: Proceedings of ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago.

Malti, R. and J. Sabatier (2004). Time-Domain System Identification Using Fractional Models: A Benchmark. En: Proceedings of the First IFAC Workshop on Fractional Differentiation and Applications, Bordeaux, France, pp. 315-320.

Manabe, S. (1963). The Non-Integer Integral and Its Application to Control Systems. ETJ of Japan, 6 (3).

Matignon, D. and B. dÁndréa-Novel (1996). Some Results on Controllability and Observability of Finite-Dimensional Fractional Differential Systems. En: Proceedings of Computational Engineering in Systems and Application Multiconference, 2, Lille, France, pp. 952-956.

Matignon, D. (2000). Stability Properties for Generalized Fractional Differential Systems. The European Series in Applied and Industrial Mathematics, 5, pp. 145-158.

Melchior, P., P. Lanusse, O. Cois, F. Dancla, and A. Oustaloup (2002). Crone Toolbox for Matlab: Fractional Systems Tolbox - Tutorial Workshop on Fractional Calculus Applications in Automatic Control and Robotics. En: Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada, USA

Melchior, P., B. Orsoni, O. Lavialle, A. Poty, and A. Oustaloup (2003). Consideration of Obstacle Danger Level in Path Planning Using A∗and Fast-Marching Optimisation: Comparative Study. Signal processing, 83 (11), pp. 2387-2396.

Melchior, P., N. Petit, P. Lanusse, M. Aoun, F. Levron and A. Oustaloup (2004). Matlab Based Crone Control for Fractional Systems. En: Proceedings of the First IFAC Workshop on Fractional Differentiation and Applications, Bordeaux, France, pp. 220-227.

Metzler, R., W.G. Glöckle, and T.F. Nonnenmacher (1994). Fractional Model Equation for Anomalous Diffusion.Physica A, 211, pp.13-24.

Miller, K. S. and B. Ross (1993). An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons, NewYork.

Monje, C.A., A.J. Calderón, B.M. Vinagre, and V. Feliu (2004). The Fractional Order Lead Compensator. En: 2nd IEEE International Conference on Computational Cybernetics, Vienna, Austria, pp. 347-352.

Monje, C.A., B.M. Vinagre, Y.Q. Chen, V. Feliu, P. Lanusse, and J. Sabatier (2005a). Optimal Tunings for Fractional PIλDμ Controllers. Fractional Differentiation and Its Applications (A. Le Mehauté, J.A. Tenreiro, J.C.Trigeassou, and J. Sabatier (Ed.)). Ubooks, Germany, pp. 675-686.

Monje, C.A., B.M. Vinagre, A.J. Calderón, V. Feliu, and Y. Q. Chen (2005b). Auto-Tuning of Fractional Lead-Lag Compensators. En: 16th IFAC World Congress, Prague, July 4-8.

Ortigueira, M.D. and J.A. Tenreiro (Eds.) (2003). Special Issue: Fractional Signal Processing and Applications. Signal Processing, 83 (11). Elsevier, Netherlands.

Oustaloup, A. (1995). La Dérivation Non Entière. Hermès, Paris.

Oustaloup, A., B. Mathieu, and P. Lanusse (1995). The CRONE Control of Resonant Plants: Application to a Flexible Transmission. European Journal of Control, 1 (2), pp. 113-121.

Oustaloup, A., P. Melchior, P. Lanusse, O. Cois, and F. Dancla (2000). The CRONE Toolbox for Matlab. En: 11th IEEE International Symposium on Computer-Aided Control System Design, Anchorage, Alaska, USA.

Padovan, J. and J. T. Sawicki (1997). Diophantine Type Fractional Derivative Representation of Structural Dynamics, Part I: Formulation. Computational Mechanics, 19, pp. 335-340.

Pereira, E., C. A. Monje, B. M. Vinagre, and F. Gordillo (2002). Matlab Toolbox for the Analysis of Fractional Order Systems with Hard Non-linearities. En: Proceedings of the First IFAC Workshop on Fractional Differentiation and Applications, Bordeaux, France, pp. 214-219.

Petráš, I. and M. Hypiusova (2002). Design of Fractional-Order Controllers via H∞ Norm Minimisation. Selected Topics in Modelling and Control, 3, pp. 50-54.

Petráš, I. and B. M. Vinagre (2002). Practical Application of Digital Fractional-Order Controller to Temperature Control. Acta Montanistica Slovaca, 7 (2), pp. 131-137.

Petráš, I., B. M. Vinagre, L. Dorcák, and V. Feliu (2002a). Fractional Digital Control of a Heat Solid: Experimental Results. In: International Carpathian Control Conference, Malenovice, pp. 365-370.

Petráš, I., I. Podlubny, P. O’Leary, L. Dorcak, and B. M. Vinagre (2002b). Analogue Realization of Fractional Order Controllers. Fakulta Berg, TU Kosice, Kosice.

Podlubny, I. (1999). Fractional Differential Equations. Academic Press, San Diego.

Pommier, V., R. Musset, P. Lanusse, and A. Oustaloup (2003). Study of Two Robust Control for an Hydraulic Actuator. In: ECC 03: European Control Conference 2003, Cambridge, UK.

Pommier, V., Y.Janat, P. Lanusse, and A. Oustaloup (2004). Crone Control of the Elevation of a Helicopter Model. En: Proceedings of the First IFAC Workshop on Fractional Differentiation and Applications, Bordeaux, France, pp. 502-507.

Poty, A., P. Melchior, and A. Oustaloup (2004). Dynamic Motion Planning by Fractional Potential Using Fast Marching Optimisation. En: Proceedings of the First IFAC Workshop on Fractional Differentiation and Applications, Bordeaux, France, pp. 532-538.

Raynaud, H. F., and A. Zergaïnoh (2000). State Space Representation for Fractional Order Controllers. Automatica ,36 , pp. 1017-1021.

Sabatier, J., P. Melchior, and A. Oustaloup (2003). Réalisation dún Banc dÉssais Thermique pour lÉnseignement des Systèmes Non Entier. In: Colloque sur lÉnseignement des Technologies et des Sciences de lÍnformation et des Systèmes, Université Paul Sabatier, Toulouse, pp. 361-364.

Schnieder, W. R. and W. Wyss (1989). Fractional Diffusion and Wave Equations.Journal of Mathematics and Physics, 30 (1), pp.134.144.

Suárez, J. I., B. M. Vinagre, and Y.Q. Chen (2006). A Fractional Adaptation Scheme for Lateral Control of an AGV. 2nd IFAC Workshop on Fractional Differentiation and Applications, Porto, Portugal. (Aceptado)

Tenreiro, J. A., and A. Azenha (1998). Fractional-Order Hybrid Control of Robot Manipulators. In: 1998 IEEE International Conference on Systems, Man and Cybernetics: Intelligent Systems for Humans in a Cyberworld, San Diego, California, USA, pp. 788-793.

Tenreiro, J. A. (Ed.) (2002). Special Issue: Fractional Order Calculus and Its Applications. Nonlinear Dynamics, 29 (1-4). Kluwer Academic Publishers, Netherlands.

Tustin, A., J. T. Allansson, J. M. Layton, and R. J. Jakeways (1958). The Design of Systems for Automatic Control of the Position of Massive Objects. En: Proceedings of the Institution of Electrical Engineers, 105 (C), Supp. 1, pp. 1-57.

Valério, D. and J. Sá Da Costa (2002). Time Domain Implementations of Non-Integer Order Controllers. En: Proceedings of CONTROLO, Aveiro, Portugal, pp. 353-358.

Valério, D. and J. Sá Da Costa (2003a). Optimisation of Non-Integer Order Control Parameters for a Robotic Arm. En: Proceedings of the International Conference on Advanced Robotics, Coimbra, Portugal.

Valério, D. and J. Sá Da Costa (2003b). Digital Implementation of Non-Integer Control and its Application to a Two-Link Robotic Arm. En: Proceedings of the European Control Conference, Cambridge, England.

Valério, D. and J. Sá Da Costa (2004a). Ninteger: A Non-Integer Control Toolbox for MATLAB. En: Proceedings of the First IFAC Workshop on Fractional Differentiation and Applications, Bordeaux, France, pp. 208-213.

Valério, D. and J. Sá Da Costa (2004b). A Method for Identifying Digital Models and Its Application to Non-Integer Control. En: Proceedings of CONTROLO, Faro, Portugal.

Valério, D. (2005). Fractional Robust System Control. PhD Thesis, Universidade Técnica de Lisboa, Lisboa.

Valério, D. and J. Sá Da Costa (2005). Fractional Order Control of a Flexible Robot. Fractional Differentiation and Its Applications, (A. Le Mehauté, J. A. Tenreiro, J. C. Trigeassou, and J. Sabatier (Eds.)). Ubooks, Germany, pp. 649-660.

Vinagre, B. M. (2001). Modelado y Control deSistemas Dinámicos Caracterizados por Ecuaciones Íntegro-Diferenciales de Orden Fraccionario. Tesis Doctoral, UNED, Madrid.

Vinagre, B. M., I. Petráš, P. Merchán, and L. Dorcák (2001). Two Digital realizations of Fractional Controllers: Application to Temperature Control of a Solid. In: Proceedings of the European Control Conference, Porto, Portugal, pp. 1764-1767.

Vinagre, B. M., I. Petráš, I. Podlubny, and Y. Q. Chen (2002). Using Fractional Order Adjustment Rules and Fractional Order Reference Models in Model-Reference Adaptive Control. Nonlinear Dynamics, 29 (1-4), pp. 269-279.

Vinagre, B. M., C. A. Monje, A. J. Calderón, Y. Q. Chen, and V. Feliu (2004). The Fractional Integrator as a Reference Function. En: Proceedings of the First IFAC Workshop on Fractional Differentiation and Applications, Bordeaux, France, pp. 150-155.

Vinagre, B. M., and A. J. Calderón (2006). On Fractional Sliding Mode Control. CONTROLO 2006 (Aceptado).

Wyss, W. (1986). The Fractional Diffusion Equation. Journal of Mathematics and Physics, 27(11), pp. 2782-2785.

Yago, B. S. (1999). Fractional-PID Control for Active Reduction of Vertical Tail Buffeting. Tech. rep., Saint Louis University.

Ziegler, J. G. and N. B. Nichols (1942). Optimum Settings for Automatic Controllers.Transactions of the ASME, 64, pp. 759-768.

Abstract Views

958
Metrics Loading ...

Metrics powered by PLOS ALM




Licencia Creative Commons

Esta revista se publica bajo unaLicencia Creative Commons Atribución 4.0 Internacional.

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912