Entorno Gráfico de Modelado para Problemas de Optimización de Sistemas a Gran Escala

José Luis Risco Martín, Jesús Manuel de la Cruz García, Bonifacio de Andrés y Toro, Alberto Herrán González

Resumen

En este trabajo se definen los formalismos necesarios para construir un entorno gráfico de modelado de problemas de optimización de sistemas a gran escala. Dado un problema modelado bajo esta orientación se generan automáticamente las bases de datos que albergarán la información del problema, datos ficticios para la realización de pruebas iniciales y los modelos de resolución, así como modelos de depuración en caso de que el resolutor no encuentre solución factible. Además se generan automáticamente editores gráficos que permitan visualizar gráficamente los datos del problema representado y sus soluciones, permitiendo modificar estos de forma cómoda. Finalmente estos formalismos se han utilizado para implementar un editor de problemas de optimización, que contemple las características mencionadas.

Palabras clave

Optimización; Meta-modelado; Modelado basado en grafos; Transformaciones; Logística

Texto completo:

PDF

Referencias

Bachman, C.W. (1969). Data Structure Diagrams. DataBase 1 (2), 4–10.

Bemporad, A. and M. Morari (1999). Control of Systems Integrating Logic, Dynamics, and Constraints. Automatican 35 (3), 407–427.

Blonstein, D., H. Fahmy and A. Grbavec (1996). Issues in the Practical Use of Graph Rewriting. Lecture Notes in Computer Science 1073, 38–55.

Booch, G., J. Rumbaugh and Jacobson I (1999). The Unified Modeling Language User Guide. Addison Wesley.

Cajori, F. (1993). History of Mathematical Notations. Dover Publications, Inc.

Castillo, E., A. J. Conejo, P. Pedregal, R. García and N. Alguacil (2002). Building and Solving Mathematical Programming Models in Engineering and Science.Pure and Applied Mathematics Series, Wiley, New York.

Checkland, P. (2000). Soft systems methodology: a thirty year retrospective. Systems Research and Behavioral Science

Choobineh, J. (1991). Sqlmp: A data sublanguage for representation and formulation of linear mathematical models. ORSA Journal on Computing 3 (4), 358–375.

Collaud, G. and J. Pasquier-Boltuck (1994). gLPS: A graphical tool for the definition and manipulation of linear problems. European Journal of Operations Research 72, 277–286.

Ehrig, H., G. Engels, H.J. Kreowski and G. Rozenberg (1999). Handbook of Graph Grammars and Computing by Graph Transformation. Applications, Languages, and Tools, World Scientific

Fourer, R. (1997). Database structures for mathematical programming models. Decision Support Systems 20, 317–344.

Gazmuri, P. and I. Arrate (1995). Modeling and visualization for a production planning. Decision Support System 2, 249–258.

Geoffrion, A. (1987). Introduction to structured modeling. Management Science 33, 547–588.

Greenberg, H.J. (1993). A Computer-Assisted Analysis System for Mathematical Programming Models and Solutions: A User s Guide for ANALYZE. Kluwer Academic Publishers

Greenberg, H.J. (1996). A bibliography for the development of an intelligent mathematical programming system. ITORMS 65, 55–90.

Jones, C.V. (1990). An introduction to graph-based modeling systems, part I: Overview. ORSA Journal on Computing 2 (2), 136–151.

Jones, C.V. (1991). An introduction to graphbased modeling systems, part II: Graph grammars and the implementation. ORSA Journal on Computing 3 (3), 180–206.

Jones, C.V. and T.E. Baker (1996). MIMI/G: A graphical environment for mathematical programming and modeling. Interfaces

Ma, P., F.H. Murphy and E.A. Stohr (1996). An Implementation of LPFORM. INFORMS Journal on Computing

Maturana, S. and Y. Eterovic (1995). Vehicle routing and production planning in decision support systems: Designing graphical user interfaces. International Transactions in Operational Research 2 (3), 233–247.

Maturana, S., P. Gazmuri and C. Villena (1996). Development and implementation of a production planning dss for a chilean manufacturing firm. Proceedings of the 20th International Conference on Computers & Industrial Engineering, pp. 757–760.

Mitra, G., B. Kristjansson, C. Lucas and S. Moody (1995). Sets and indices in linear programming modelling and their integration with relational data models. Computational Optimization and Applications 4, 263–292.

Müller-Merbach, H. (1990). Database-oriented design of planning models. IMA Journal of Mathematics Applied in Business and Industry 2, 141–155.

Palmer, K.H. (1984). A Model-Management framework for Mathematical Programming. John Wiley & Sons. New York.

Risco-Martín, J.L. (2004). Sistema Integrado de Gestión Logística Optimizada. Tesis doctoral. Universidad Complutense de Madrid.

Risco-Martín, J.L., A. Herrán-González, J.M. Cruz-García and B. Andrés-Toro (2004). Hybrid Heuristic and Mathematical Programming in Oil Pipelines Networks. Journal of Zheijang University

Rosenhead, J. (1996). What’s the problem? An introduction to problem structuring methods. Interfaces

Sharda, R. and D. Steiger (1995). Using artificial intelligence to enhance model analysis. the impact of emerging technologies. Computer Science and Operations Research, pp. 263–279.

Turban, E. (1995). Decision Support and Expert Systems: Management Support Systems. Prentice-Hall.

Welch, J.S. (1987). The data management needs of mathematical programming applications. IMA Journal of Mathematics in Management, pp. 237–250.

Zimmermann, H.J. (1988). Interactive decision support for semi-structured mathematical programming problems. Mathematical Models for Decision Support, pp. 307–319.

Abstract Views

381
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912