Control Robusto Cuantitativo QFT: Historia de una Idea

Mario García-Sanz

Resumen

Después de casi 45 años de investigación teórica y de aplicación práctica en muy diversas áreas de la ingeniería, el control robusto cuantitativo QFT (Quantitative Feedback Theory) ha demostrado ser una excelente metodología de diseño de controladores. Ante el reciente fallecimiento de su fundador, el Prof. Isaac Horowitz, el presente artículo resume los hitos históricos más relevantes, las líneas de investigación abiertas, las aplicaciones exitosas realizadas y las principales referencias bibliográficas de la técnica QFT.

Palabras clave

Quantitative Feedback Theory (QFT); Control Robusto Cuantitativo; Dominio de la Frecuencia

Texto completo:

PDF

Referencias

Bode H.W., (1945), Network Analysis and Feedback Amplifier Design. Van Nostrand Company.

Horowitz I., (1963), Synthesis of Feedback Systems. New York, Academic Press.

Horowitz I., (1993), Quantitative Feedback Design Theory (QFT). QFT Pub., 660 South Monaco Parkway, Denver, Colorado 80224-1229.

Yaniv O., (1999a), Quantitative Feedback Design of Linear and Non-linear Control Systems. Kluver Academic Pub.

Sidi M., (2002), Design of Robust Control Systems: From classical to modern practical approaches. Krieger Publishing.

Houpis C.H., Rasmussen S.J., García-Sanz, M. (2005), Quantitative Feedback Theory: Fundamentals and Applications. 2ª Edición. CRCPress, USA

Houpis, C.H. (Guest Editor). Quantitative Feedback Theory Special Issue. Int. J. Robust Nonlinear Control. Vol. 7, No. 6, June 1997. Wiley.

Eitelberg, Eduard (Guest Editor). Isaac Horowitz Special Issue. Int. J. Robust Nonlinear Control. Parte 1, Vol. 11, N. 10, August 2001 y Parte 2, Vol. 12, No. 4, April 2002. Wiley.

García-Sanz, Mario (Guest Editor). Robust Frequency Domain Special Issue. Int. J. Robust Nonlinear Control. Vol. 13, No. 7, June 2003. Wiley.

Houpis C.H., y Chander P. (Editors). 1st Int. Symp. on QFT and Robust Frequency Domain Methods, Writght Patterson Airforce Base, Dayton, Ohio, USA, August 1992.

Nwokah O.D.I., y Chander P. (Editors). 2nd Int. Symp. on QFT and Robust Frequency Domain Methods, Purdue University, West Lafayette, Indiana, USA, August 1995.

Petropoulakis L., y Leithead W.E.(Editors). 3rd Int. Symp. on QFT and Robust Frequency Domain Methods, University of Strathclyde, Glasgow, Scotland, UK, August 1997.

Boje E., y Eitelberg E. (Editors). 4th Int. Symp. on QFT and Robust Frequency Domain Methods, University of Natal, Durban, South Africa, August 1999.

García-Sanz M. (Editor). 5th Int. Symp. on QFT and Robust Frequency Domain Methods, Public University of Navarra, Pamplona, Spain, August 2001a.

Boje E., y Eitelberg E. (Editors). 6th Int. Symp. on QFT and Robust Frequency Domain Methods, University of Cape Town, Cape Town, South Africa, December 2003.

Horowitz, I., (1982a), Quantitative Feedback Theory. IEE Control Theory and Applications, Vol. 129, pp. 215-226.

Horowitz, I. (1991), Survey of Quantitative Feedback Theory. International Journal of Control, Vol. 53(2), pp. 255-291.

Houpis C.H. (1996), Quantitative Feedback Theory (QFT) Technique. en The Control Handbook. CRC Press, IEEE Press. (Editor W.S. Levine), Chapter 44. pp. 701-717.

Horowitz, I.M (1992). QFT – Past, present and future. Plenary address. 1st Int. Symp. on QFT and Robust Frequency Domain Methods, Dayton, Ohio, USA, pp. 9-14.

Horowitz, I.M (1999). Frequency response in control. Plenary. 4th Int. Symp. on QFT and Robust Frequency Domain Methods, Durban, South Africa, pp. 233-239.

Horowitz, I.M (2002). It was not easy: a personal view. Int. J. Robust Nonlinear Control, Vol. 12, No. 4, pp. 289-293.

Houpis, C.H. (2002). Horowitz: bridging the gap. Int. J. Robust Nonlinear Control, Vol. 12, No. 4, pp. 293-302.

García-Sanz, M. (2001b). QFT international symposia: past, present and future. Editorial del 5th Int. Symp. on QFT and Robust Frequency Domain Methods, Pamplona, Spain.

Horowitz I.M, (1959), Fundamental theory of automatic linear feedback control systems. I.R.E. Transactions on Automatic Control, Vol. 4, December, pp. 5-19.

Horowitz I.M, Sidi M. (1972), Synthesis of feedback systems with large plant ignorance for prescribed time-domain tolerances. Int. J. Control, Vol. 16, No. 2, pp. 287-309.

Horowitz I.M, (1973), Optimum loop transfer function in single-loop minimum-phase feedback systems. Int. J. Control, Vol. 18, No.1, pp. 97-113.

Bartlett, A.C., Tesi, A., Vicino, A. (1993). Frequency response of uncertain systems with interval plants. IEEE Trans. On Automatic Control, Vol. 38, No. 6, pp. 929-933.

Bartlett, A.C. (1993). Computation of the frequency response of systems with uncertain parameters: a simplification. Int. J. of Control, Vol. 57, No. 6, 1293-1309.

Gutman, PO., Baril, C. Neuman, L. (1994), An algorithm for computing value sets of uncertain transfer functions in factored real form. IEEE Trans. on Automatic Control, Vol. 39, No. 6.

Ballance, D.J., y Hughes, G. (1996), A survey of template generation methods for Quantitative Feedback Theory. UKACC International conference on control '96, pp. 172-174.

Ballance, D.J., y Chen, W. (1998), Symbolic computation in value sets of plants with uncertain parameters, UKACC International conference on control '98, pp. 1322-1327.

García-Sanz, M. y Vital P., (1999), Efficient Computation of the Frequency Representation of Uncertain Systems, 4th Int. Symp. on QFT and Robust Frequency Domain Methods, pp. 117-126, Durban, South Africa.

Nataraj, P.S.V., Sardar, G. (2000a). Template generation for continuous transfer functions using interval analysis. Automatica, Vol 36, pp. 111-119.

Chait Y, y Yaniv O. (1993), Multi-input/single-output computer-aided control design using the Quantitative Feedback Theory. Int. J. Robust Nonlinear Control, 1993, No.3, pp. 47-54.

Zhao, Y., Jayasuriya, S. (1994). On the generation of QFT bounds for general interval plants. Trans. of the ASME, Vol. 116, pp. 618-627.

Rodrigues, J.M., Chait, Y., Yaniv, O. (1997). An efficient algorithm for computing QFT bounds. Trans. of the ASME, Vol. 119, pp. 548-552.

Moreno, J.C., Baños, A. y Montoya, J.F. (1997). An algorithm for computing QFT múltiple-valued performance bounds. Int. Symp. on QFT and Robust Frequency Domain Methods, pp. 29-34, Scotland.

Nataraj, P.S.V., Sardar, G. (2000b). Computation of QFT bounds for robust sensitivity and gainphase margin specifications. Trans. of the ASME, Vol. 122, pp. 528-534.

Nataraj, P.S.V. (2002). Interval QFT: a mathematical and computational enhancement of QFT. Int. J. Robust Nonlinear Control, Vol. 12, No. 4, pp. 385-402.

Gera, A., Horowitz I.M, (1980), Optimisation of the loop transfer function. Int. J. Control, Vol. 31, No. 2, pp. 389-398.

Thompson, D.F. y Nwokah, O.D.I. (1994). Analytic loop shaping methods in quantitative feedback theory. ASME, Journal of dynamic systems, measurement and control, Vol. 116, No. 2, pp. 169-177.

Chait Y., Chen Q., y Hollot C.V. (1997), Automatic loop-shaping of QFT controllers via linear programming, 3rd Int. Symp. on QFT and other Robust Frequency Domain Methods, Glasgow, UK, pp. 13-28.

García-Sanz, M. y Guillen J.C., (2000), Automatic loop-shaping of QFT robust controllers via genetic algorithms, 3rd IFAC Symposium on Robust Control Design, Praha, Czech Republic.

Nwokah, O.D.I., Thompson, D.F., y Pérez, R.A. (1990). On some existence conditions for QFT controllers, DSC, Vol. 24, pp.1-10.

Jayasuriya, S. and Y. Zhao, (1994), Stability of Quantitative Feedback Designs and the Existence of Robust QFT Controllers, Int. J. Robust Nonlinear Control. Vol. 4, No. 1, pp. 21-46.

Gil-Martinez, M. and García-Sanz M., (2003) Simultaneous Meeting of Robust Control Specifications in QFT, Int. J. Robust Nonlinear Control. Vol. 13, No. 7, pp. 643-656.

Horowitz I.M, (1979a), Quantitative synthesis of uncertain multiple input-output feedback systems. Int. J. Control, Vol. 30, No. 1, pp. 81-106.

Horowitz I.M, y Sidi M., (1980), Practical Design of feedback systems with uncertain multivariable plants. Int. J. Control, Vol. 11, No. 7, pp. 851-875.

Horowitz, I. M. y C. Loecher, (1981). Design 3x3 Multivariable Feedback System with Large Plant Uncertainty. Int. J. Control. Vol. 33, pp. 677-699.

Horowitz, I., Neumann, L. y Yaniv, O., (1981). A synthesis technique for highly uncertain interacting multivariable flight control system (TYF16CCV). Proc. Naecon Conf. Dayton, Oh, pp. 1276-1283.

Horowitz I. (1982b). Improved design technique for uncertain multiple input-output feedback systems. Int. J. Control. Vol. 36, pp. 977-988.

Nwokah, O.D.I., (1984), Synthesis of Controllers for Uncertain Multivariable Plants for Described Time Domain Tolerances, Int. J. of Control, Vol. 40, pp. 1189-1206.

Yaniv, O., y Horowitz, I.M. (1986). A Quantitative Design Method for MIMO Linear Feedback Systems Having Uncertain Plants, Int. J. of Control, Vol. 43, pp. 401-421.

Nwokah, O.D.I., (1988), Strong Robustness in Uncertain Multivariable Systems, IEEE Conf. on Decision and Control, Austin, TX.

Franchek, M.A. and Nwokah O.D.I., (1995), Robust multivariable control of distillation columns using non-diagonal controller matrix, DSC-Vol. 57-1, IMECE, ASME Dynamics systems and control division, pp. 257-264.

Yaniv, O., (1995), MIMO QFT using non-diagonal controllers, Int. J. of Control, Vol.61, No. 1, pp. 245-253.

Franchek, M.A, Herman, P. y Nwokah, O.D.I. (1997). Robust nondiagonal controller design for uncertain multivariable regulating systems, ASME J. Dynamic Systems, Measurement and Control, Vol. 119, pp. 80-85.

Boje, E. (2002). Non-diagonal controllers in MIMO quantitative feedback design. Int. J. Robust Nonlinear Control, Vol. 12, No. 4, pp. 303-320.

García-Sanz M. y Egaña I. (2002). Quantitative Non-diagonal Controller Design for Multivariable Systems with Uncertainty. Int. J. Robust Nonlinear Control, Vol. 12, No. 4, pp. 321-333.

De Bedout, J.M. and Franchek M.A., (2002), Stability conditions for the sequential design of non-diagonal mu1tivariable feedback controllers, Int. J. of Control, Vol. 75, N. 12, pp. 910-922.

García-Sanz M., Egaña I., Barreras M. (2005a). Design of quantitative feedback theory non-diagonal controllers for use in uncertain multiple-input multiple-output systems. IEE Control Theory and Applications. Vol. 152, N. 02, pp. 177-187.

Kerr, M.L., Jayasuriya S. y Asokanthan S.F, (2005), On stability in non-sequential MIMO QFT designs, accepted for publication, ASME J. Dynamic Systems, Measured and Control

García-Sanz, M. y Guillen, J.C. (1999) Smith Predictor For Uncertain Systems In The QFT Framework. Lecture Notes in Control and Information Sciences, Ed. Springer Verlag. Vol 243. Progress in System and Robot Analysis and Control Design. Chapter 20, pp. 243-250.

Horowitz, I.M. y Liao, Y. (1986a). Quantitative feedback design for sampled-data systems. Int. J. Control, Vol. 44, pp. 665-675.

Houpis, C.H., y Lamont, B.G. (1992). Discrete quantitative feedback technique, Capítulo 16 en el libro: Digital Control Systems: theory, hardware, software, 2ª edicion. McGraw Hill

Horowitz, I., Azor, R. (1983). Quantitative synthesis of feedback systems with distributed uncertain plants. Int. J. Control, Vol. 38, No. 2, pp. 381-400.

Horowitz, I., Azor, R. (1984). Uncertain partially non-casual distributed feedback systems. Int. J. Control, Vol. 40, No. 5, pp. 989-1002.

Horowitz, I., Kannai, Y. and Kelemen, M. (1989). QFT approach to distributed systems Control and Applications. Proceedings ICCON '89. IEEE Int. Conf., pp. 516-519.

Kelemen M, Kanai Y. and Horowitz I.M. (1989). One-point Feedback Approach to Distributed Linear Systems. Int. Journal of Control, Vol. 49, No. 3, pp. 969-980

Chait Y, Maccluer C.R. and Radcliffe C.J. (1989). A Nyquist Stability Criterion for Distributed Parameter Systems. IEEE Transactions on Automatic Control, Vol. 34, No. 1, pp. 90-92.

Kelemen M, Kanai Y. and Horowitz I.M. (1990). Improved method for designing linear distributed feedback systems. Int. Journal of Adaptive Control and Signal Processing, Vol. 4, pp. 249-257.

Hegde, M.D., Nataraj, P.S.V. (1995). The two-point feedback approach to linear distributed systems. Proc. Int. Conf. On Automatic Control, Indore, India, December 1995.

García-Sanz, M., Huarte, A. y Asenjo, A. (2005b) One-point feedback robust control for distributed parameter systems. 16th IFAC World Congress, Praga

Horowitz I.M, Sidi M., (1978), Optimum synthesis of non-minimum phase systems with plant uncertainty. Int. J. Control, Vol. 27, No. 3, pp. 361-386.

Horowitz I.M, (1979b), Design of feedback systems with non-minimum phase unstable plants. Int. J. Systems Science, Vo. 10, pp. 1025-1040.

Horowitz, I.M. y Liao, Y. (1984). Limitations on non-minimum phase feedback systems. Int. J. Control, Vol. 40, No. 5, pp. 1003-1015.

Horowitz, I.M., Oldak, S., y Yaniv, O. (1986). An important property of non-minimum phase multi-inputs multi-outputs feedback systems. Int. J. Control, Vol. 44, No. 3, pp. 677-688.

Horowitz, I.M. (1986). The singular-G method for unstable non-minimum phase plants. Int. J. Control, Vol. 44, No. 2, pp. 533-541.

Chen, W., Ballance, D. (1998). QFT design for uncertain non-minimum phase and unstable plants. American Control Conference, pp. 2486-2490. Philadelphia, Pennsylvania.

Horowitz, I.M., Neumann, L. y Yaniv, O. (1985). Quantitative synthesis of uncertain cascade multi-input multi-output feedback systems. Int. J. Control, Vol. 42, No. 2, pp. 273-303.

Horowitz, I.M., y Yaniv, O. (1985). Quantitative cascade multi-input multi-output synthesis by an improved method. Int. J. Control, Vol. 42, No. 2, pp. 305-331.

Eitelberg, E. (1999). Load Sharing Control. NOYB Press. Durban, South Africa.

Horowitz I.M, (1976), Synthesis of feedback systems with non-linear time-varying uncertain plants to satisfy quantitative performance specifications. IEEE Proc., Vol. 64, pp.123-130.

Horowitz I.M, (1981a), Quantitative synthesis of uncertain non-linear feedback systems with non-minimum phase inputs. Int. J. Systems Science, Vol. 1, No. 12, pp. 55-76.

Horowitz,I.M, (1981b). Improvements in quantitative non-linear feedback design by cancellation. Int. J. Control, Vol. 34, No. 3, pp. 547-560.

Horowitz, I.M., (1982c). Feedback systems with non-linear uncertain plants. Int. J. Control, Vol. 36, pp. 155-171.

Horowitz, I.M., (1983). A synthesis theory for a class of saturating systems. Int. J. Control, Vol. 38, No. 1, pp. 169-187.

Horowitz, I.M., y Liao, Y., (1986b). Quantitative non-linear compensation design for saturating unstable uncertain plants. Int. J. Control, Vol. 44, pp. 1137-1146.

Oldak S., Baril C. y Gutman P.O., (1994). Quantitative design of a class of nonlinear systems with parameter uncertainty. Int. J. Robust Nonlinear Control, Vol. 4, pp. 101-117.

Baños, A. y Barreiro, A. (2000). Stability of non-linear QFT designs based on robust absolute stability criteria. Int. Journal of Control, Vol. 73, No. 1, pp. 74-88.

Baños, A., Barreiro, A., Gordillo, F. y Aracil, J. (2002). A QFT framework for nonlinear robust stability. Int. J. Robust Nonlinear Control, Vol. 12, No. 4, pp. 357-372.

Horowitz, I.M. (1975). A synthesis theory for linear time-varying feedback systems with plant uncertainty. IEEE Transactions on Automatic Control, Vol. AC-20, pp. 454-463.

Yaniv. O., Boneh, R. (1997). Robust LTV feedback synthesis for SISO nonlinear plants. Int. J. Robust Nonl. Control, Vol. 7, pp. 11-28.

Yaniv. O. (1999b). Robust LTV feedback synthesis for nonlinear MIMO plants. Trans. of the ASME Vol. 121, pp. 226-232.

Sating, R.R., (1992). Development of an Analog MIMO Quantitative Feedback Theory (QFT) CAD Package, MS Thesis, AFIT/GE/ENG/92J-04, Air Force Institute of Technology, Wright Patterson AFB, OH.

Houpis, C.H., Sating, R.R., (1997). MIMO QFT CAD Package (Ver.3), Int. J. Control, Vol. 7, No. 6, pp. 533-549.

Borghesani, C., Chait, Y. y Yaniv, O., (1994, 2002). Quantitative Feedback Theory Toolbox – For use with MATLAB. Terasoft.

Gutman P-O., (1996, 2001). Qsyn - the Toolbox for Robust Control Systems Design for use with Matlab, User's manual, NovoSyn AB, Jonstortpsvagen 61, Jonstorp, Sweden.

Houpis C.H., Rasmussen S.J., García-Sanz, M. (2001, 2005), Software de diseño del libro Quantitative Feedback Theory: Fundamentals and Applications. Edición 2ª. CRCPress, USA.

García-Sanz, M., Vital, P., Barreras, M., y Huarte, A. (2001a). InterQFT. Public University of Navarra. También presentado como Interactive Tool for Easy Robust Control Design, IFAC Int. Workshop on Internet Based Control Education, pp. 83-88, Madrid, Spain.

Diaz J.M., Dormido S., y Aranda J. (2004), SISO-QFTIT, una herramienta software interactiva para diseño de controladores robustos usando QFT. UNED, Madrid, Spain.

Horowitz, I.M. et al, (1982). Multivariable Flight Control Design with Uncertain Parameters (YF16CCV), AFWAL-TR-83-3036, Air Force Wright Aeronautical Laboratories, Wright-Patterson AFB, OH.

Walke, J., Horowitz, I. y Houpis, C. (1984). Quantitative synthesis of highly uncertain MIMO flight control system for the forward swept wing X-29 aircraft. Proc. IEEE Naecon Conf., pp. 576-583.

Bossert, D.E., (1989). Design of Pseudo-Continuous-Time Quantitative Feedback Theory Robot Controllers, AFIT/GE/ENG/ 89D-2, Air Force Institute of Technology, Wright-Patterson AFB, OH.

Trosen, D.W., (1993). Development of an Prototype Refueling Automatic Flight Control System Using Quantitative Feedback Theory, AFIT/GE/ENG/93-J-03, Air Force Institute of Technology, Wright-Patterson AFB, OH.

Kelemen, M., y Bagchi, A. (1993). Modeling and feedback control of a flexible arm of a robot for prescribed frequency domain tolerances. Automatica, Vol. 29, pp. 899-909.

Reynolds, O.R., Pachter, M. y Houpis, C.H. (1994). Design of a Subsonic Flight Control System for the Vista F-16 Using Quantitative Feedback Theory, Proceedings of the American Control Conference, pp. 350-354.

Rasmussen, S.J. y Houpis, C.H. (1994). Development Implementation and Flight of a MIMO Digital Flight Control System for an Unmanned Research Vehicle Using Quantitative Feedback Theory, Proceedings of the ASME Dynamic Systems and Control, Winter Annual Meeting of ASME, Chicago, IL.

Osmon, C., Pachter, M. y Houpis, C.H. (1996). Active Flexible Wing Control Using QFT, IFAC 13th World Congress, Vol. H, pp. 315-320, San Francisco, CA.

Franchek, M. y Hamilton, G.K. (1997). Robust Controller Design and Experimental Verification of I.C. Engine Speed Control, Int. J. of Robust and Nonlinear Control, vol. 7, pp. 609-628.

Pachter, M., Houpis, C.H. y Kang, K. (1997). Modelling and Control of an Electro-hydrostatic Actuator, Int. J. of Robust and Nonlinear Control, vol. 7, pp. 591-608.

García-Sanz, M. y Ostolaza, J.X., (2000). QFT-Control of a Biological Reactor for Simultaneous Ammonia and Nitrates Removal. Int. J. on Systems, Analysis, Modelling, Simulation, SAMS, No. 36, pp. 353-370.

Egaña, I., Villanueva, J., y García-Sanz, M. (2001). Quantitative Multivariable Feedback Design for a SCARA Robot Arm, 5th Int. Symp. on QFT and Robust Frequency Domain Methods, pp. 67-72, Pamplona, Spain.

Kelemen M. y Akhrif O. (2001) Linear QFT control of a highly nonlinear multi-machine power system. Int. J. Robust Nonlinear Control, Vol. 11, No. 10, pp. 961-976.

Bentley A.E. (2001). Pointing control design for high precision flight telescope using quantitative feedback theory. Int. J. Robust Nonlinear Control, Vol. 11, No. 10, pp. 923-960.

Liberzon, A., Rubinstein, D, y Gutman, P.O. (2001). Active suspension for single wheel statin of on-road track vehicle. Int. J. Robust Nonlinear Control, Vol. 11, No. 10, pp. 977-999.

García-Sanz, M., Guillen, J.C., e Ibarrola, J.J. (2001b). Robust controller design for time delay systems with application to a pasteurisation process. Control Engineering Practice, No. 9, pp. 961-972.

Yaniv O., Fried O., y Furst-Yust M. (2002). QFT application for headphone’s active noise cancellation. Int. J. Robust Nonlinear Control, Vol. 12, No. 4, pp. 373-383.

Gutman, P.O., Horesh, E., Guetta, R., y Borshchevsky, M. (2003). Control of the Aero-Electric Power Station – an exciting QFT application for the 21st century. Int. J. of Robust and Nonlinear Control, Vol. 13, No. 7, pp. 619-636.

García-Sanz, M. y Torres E., (2004), Control y experimentación del aerogenerador síncrono multipolar de velocidad variable TWT1650, RIAI, Vol. 1, No. 3, pp. 53-62.

García-Sanz, M. y Hadaegh, FY. (2004). Coordinated Load Sharing QFT Control of Formation Flying Spacecrafts. 3D Deep Space and Low Earth Keplerian Orbit problems with model uncertainty, NASA-JPL, JPL Document, D-30052, Pasadena, California, USA.

Kerr, M., (2004). Robust Control of an Articulating Flexible Structure Using MIMO QFT, PhD. Dissertation, The University of Queensland, Australia.

García-Sanz, M. y Barreras, M. (2005). Non-diagonal QFT controller design for a 3-input 3-output industrial Furnace. Int. J. of Dynamic Systems, Measurement & Control, ASME, USA.

Abstract Views

843
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912