Control y Experimentación del Aerogenerador Síncrono Multipolar de Velocidad Variable TWT1650

Mario García-Sanz, Eduardo Torres

Resumen

En un contexto internacional de fuerte innovación tecnológica en energías renovables, el presente artículo describe la nueva familia de aerogeneradores síncronos multipolares de velocidad variable y gran potencia diseñados por M.Torres. Tras varios años de investigación multidisciplinar, y más de diez prototipos de 1.5 MW y 1.65 MW en campo, los aerogeneradores TWT (Torres Wind Turbine) han demostrado excelentes prestaciones, superiores a los sistemas asíncronos convencionales. Los controladores del sistema se han diseñado mediante técnicas avanzadas de control robusto QFT, desarrolladas a partir de modelos teóricos y datos experimentales de campo, y combinadas con esquemas adaptativos, metodología multivariable y elementos predictivos. Tras una síntesis del panorama actual y una descripción del aerogenerador, el artículo muestra resultados experimentales de control ante condiciones de viento medias y extremas.

Palabras clave

Energía Eólica; Control Robusto QFT; Generadores Síncronos Multipolares de Velocidad Variable

Texto completo:

PDF

Referencias

Bongers, P.M.M., y Van Engelen, T.G. (1987). A theoretical model and simulation of a wind turbine. Wind Engineering, Vol. 11, No. 6, pp. 344-350.

Burton, T., Sharpe, D., Jenkins, N. y Bossanyi, E. (2001). Handbook of wind energy. John Wiley.

Chen, Z. y Spooner, E. (2001). Grid power quality with variable speed wind turbines. IEEE Transactions on Energy Conversion. Vol. 16, No. 2.

De la Salle, S.A., Reardon, D., Leithead, W.E. y Grimble, M.J. (1990). Review of wind turbine control. International Journal of control, Vol. 52, No. 6, pp. 1295-1310.

European Commission (1997). Energy for the Future, Renewable Sources of Energy - White Paper for Community Strategy and Action Plan, COM (97) 559 final (26/1/1997).

European Wind Energy Association, EWEA (2004), Wind Force 12, a blue print to achieve 12% of the world’s electricity from wind power by 2020. Forum of Energy & Development, Greenpeace and BTM Consult ApS, Oct.

Freris, L.L. (1990), Wind energy conversión systems. Prentice Hall.

Garcia-Sanz, M. (1998-2004). Sistemas de control del TWT1500 y del TWT1650. Informes internos de M. Torres

Garcia-Sanz, M., y Egaña, I. (2002). Quantitative Non-diagonal Controller Design for Multivariable Systems with Uncertainty. International Journal of Robust and Non-Linear Control. Isaac Horowitz Special Issue, Part 2. Vol. 12, pp. 321-333.

Garcia-Sanz, M., Egaña, I., y Barreras, M. (2004). Design of QFT non-diagonal controllers for reference tracking and external disturbances rejection in uncertain MIMO systems. Aceptado para su publicación IEE Control Theory and Applications

Garrad Hassan. (1997, 2003). Bladed for windows. Bristol, England.

Germanisher Lloyd. (1994, 2004). Rules and regulations. Hamburg, Germany.

Horowitz, I. y Sidi, M. (1972). Synthesis of feedback systems with large plant ignorance for prescribed time-domain tolerances, International Journal of Control, vol. 16, no.2, pp. 287-309.

Horowitz, I. (1991). Survey of quantitative feedback theory. International Journal of control, 53(2), pp. 255-291.

Houpis, C.H., Rasmussen, S.J., y Garcia-Sanz, M. (2005). Quantitative Feedback Theory: Fundamentals and Applications. Marcel Dekker: 2nd edition, NY, USA.

IEA 35th meeting of experts (2001), Long term R&D needs for wind energy. For the time frame 2000-2020, Proceedings, Holland: FOI, Aeronautics FFA, SE 172 90 Stockholm, Sweden, March 2001.

International Electro-technical Commission. IEC 61400 Wind Turbine Generator Systems

Leith, D.J., y Leithead, W.E., (1996), Appropriate realization of gain-scheduled controllers with application to wind turbine regulation. International Journal of Control, Vol. 65, No. 2, pp. 223-248.

Leith, D.J., y Leithead, W.E., (1997), Implementation of Wind Turbine Controllers. International Journal of Control, Vol. 66, pp. 349-380.

Leithead, W.E., y Rogers, M.C.M. (1996 a). Drive-train characteristics of constant speed HAWT’s: Part I – Representation by simple dynamic models. Wind Engineering, Vol. 20, No. 3, pp. 149-174.

Leithead, W.E., y Rogers, M.C.M. (1996 b). Drive-train characteristics of constant speed HAWT’s: Part II – Simple characterisation of dynamics. Wind Engineering, Vol. 20, No. 3, pp. 175-201.

Manwell, J.F., McGowan, J.G. y Rogers, A.L. (2002). Wind energy explained: theory, design and application. John Wiley.

MEASNET, Network of measuring institutes in Europe. (1996). Leuven.

Sheinman, Y. y Rosen, A. (1991 a). “A dynamic model for performance calculations of grid-connected horizontal axis wind turbines. Part II: Validation”. Wind Engineering, Vol. 15, No. 4, pp 229-239.

Sheinman, Y. y Rosen, A. (1991 b). A dynamic model for performance calculations of grid-connected horizontal axis wind turbines. Part I: Description model. Wind Engineering, Vol. 15, No. 4, pp 211-228.

Torres, E. y Garcia-Sanz, M. (2004). Experimental Results of the Variable Speed, Direct Drive Multipole Synchronous Wind Turbine: TWT1650. Wind Energy, Vol. 7, No. 2, pp. 109-118.

United States Patent 5083039, Variable speed wind turbines, Jan., 21, 1992.

United States Patent 5289041, Speed control system for a variable speed wind turbine, Feb. 22, 1994.

Worldwatch Institute (2000), Vital Signs 2000, ISBN 0-393-32022-7

Abstract Views

2971
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912