Control Tolerante a Fallos (Parte I): Fundamentos y Diagnóstico de Fallos

Vicenç Puig, Joseba Quevedo, Teresa Escobet, Bernardo Morcego, Carlos Ocampo

Resumen

En este artículo se presentan los fundamentos del control tolerante a fallos, se introduce el análisis estructural como una herramienta útil para el análisis y el diseño tanto del sistema de diagnostico como de los mecanismos de tolerancia a fallos, finalizando con una revisión de los métodos de diagnóstico existentes. Algunas de las técnicas de diagnostico presentadas se aplican en un proceso real, basado en el sistema de control de la red de alcantarillado de Barcelona. En un segundo artículo se presentarán los mecanismos de tolerancia que se pueden activar una vez se ha diagnosticado el fallo y serán aplicados sobre el mismo ejemplo.

Palabras clave

Control tolerante; diagnóstico de fallos; detección de fallos; acomodación al fallo; reconfiguración del controlador

Texto completo:

PDF

Referencias

Basseville, M. y I.V.Ñikiforov (1993). Detection of abrupt changes: theory and applications. Prentice Hall.

Blanke, M. (1996). Consistent design of dependable control systems. Control Engineering Practice 4, 1305-1312. https://doi.org/10.1016/0967-0661(96)00138-4

Blanke, M. (2000). What is fault-tolerant control?. Proceedings of IFAC SAFEPROCESS'00 35, 123-126. https://doi.org/10.1016/S1474-6670(17)37338-X

Blanke, M. (2001). Concepts and methods in fault-tolerant control. Proceedings of American Control Conference. https://doi.org/10.1109/ACC.2001.946264

Blanke, M., M. Kinnaert J. Lunze y M. Staroswiecki (2003). Diagnosis and fault-tolerant control. Springer-Verlag. Germany. https://doi.org/10.1007/978-3-662-05344-7

Bonarini, A. y G. Bontempi (1994). A qualitative simulation approach to fuzzy dynamical models. ACM Transactions on Modeling and Computer Simulation (TOMACS) 4, 258-313. https://doi.org/10.1145/200883.200884

Calado, J.M.F. y Sa de Costa, J.M.G. (1999). Online fault detection and diagnosis based on a coupled system. Proceedings of European Control Conference.

Cassar, J. y Staroswiecki, M. (1997). A structural approach for the design or failure detection and identification systems. IFAC/IFIP/IMACS Conference on Control of Industrial Processes. https://doi.org/10.1016/S1474-6670(17)43469-0

Cembrano, G., Quevedo J. Salamero M. Puig V. Figueras J. y Martí J. (2004). Optimal control of urban drainage systems: a case study. Control Engineering Practice. https://doi.org/10.1016/S0967-0661(02)00280-0

Chen, J. y Patton, R.J. (1999). Robust Model-Based Fault Diagnosis for Dynamic Systems. Kluwer Academic Publishers. https://doi.org/10.1007/978-1-4615-5149-2

Chow, E.Y. y Willsky, A.S. (1984). Analytical redundancy and the design of robust failure detection systems. IEEE Transactions on Automatic Control AC-29, 603 614. https://doi.org/10.1109/TAC.1984.1103593

Clark, R.N. (1989). State estimation for instrument fault detection. In: Fault diagnosis in dynamic systems, theory and application (Clark RN Patton RJ, Frank PM, Ed.). Prentice Hall. New York.

Cordier, M.O., Dague P. Dumas M. Lévy M. Montmain J. Staroswiecki M. y Travé-Massuyès L. (2002). Comparative analysis of ai and control theory approaches to model based diagnosis. European Conference on Artificial Intelligence (ECAI'2000) pp. 274-279.

De Kleer, J. y Brown, J.S. (1984). Qualitaitve physics based on confluences. Artificial Intelligence 24, 77-83. https://doi.org/10.1016/0004-3702(84)90037-7

De Kleer, J. y Williams, B. (1990). Diagnosing multiple faults. Artificial Intelligence 32, 97-130. https://doi.org/10.1016/0004-3702(87)90063-4

Ding, X. y Jeinsch, T. (1999). An approach to analysis and design of observer and parity relation based fdi systems. Proceedings of XIV IFAC World Congress. https://doi.org/10.1016/S1474-6670(17)57317-6

Emami-Naeini, A., Akhter M.M. y Rock S.M. (1988). Effect of model uncertainty on failure detection: the threshold selector. IEEE Transactions on Automatic Control AC-33, 1106-1115. https://doi.org/10.1109/9.14432

Figueras, J., Puig V. Quevedo J. (2004). Contribution to the optimal control of sewage networks including fault-tolerant capabilities. 1ª Jornada de Investigación en Automática, Visión y Robótica. Universidad Politécnica de Catalu-a.

Frank, P.M. (1991). Enhancement of robustnes in observer-based fault detection. IFAC Symposium SAFEPROCESS 2, 275-287.

Frank, P.M., Ding S.X. y Köppen-Seliger B. (2000). Current developments in the theory of fdi. IFAC Symposium SAFEPROCESS 1, 16-27.

Gertler, J. (1998). Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker. New York.

Gertler, J.J. (1991). Analytical redundancy methods in fault detection and isolation. IFAC Symposium SAFEPROCESS 1, 9-21.

Herrin, S.A. (1981). Maintainability applications using the matrix fmea technique. IEEE Transactions R-30 pp. 212-217. https://doi.org/10.1109/TR.1981.5221054

Horak, D.T. y Guidance, J. (1988). Failure detection in dynamic systems with modelling errors. Control and Dynamics 11(6), 508-516. https://doi.org/10.2514/3.20347

Isermann, R. (1993). Fault diagnosis of machines via parameter estimation and knowledge processing. Automatica 29, 815-836. https://doi.org/10.1016/0005-1098(93)90088-B

Kuipers, B. (1994). Qualitative Reasoning – Modelling and Simulation with Incomplete Knowledge. MIT Press. Cambridge, MA.

Leitch R., Shen, Q. Conghil G.-Chantler M. y Slater A. (1994). Qualitative model-based diagnosis of dynamic systems. Colloquim of the Institution of Measurement and Control.

Marcu, T., Matcovschi M.H. y Frank-P.M. (1999). Neural observer-based approach to fault detection and isolation of a three-tank systems. Proceedings of European Control Conference.

Nguyen, H.T. (1978). A note on the extension principle for fuzzy sets. Journal of Mathematical Analysis and Applications 64, 369-380. https://doi.org/10.1016/0022-247X(78)90045-8

Patton, R. J. (1997). Fault-tolerant control: the 1997 situation. Proceedings of IFAC Symposium on SAFEPROCESS pp. 1033-1055. https://doi.org/10.1016/S1474-6670(17)42536-5

Ploix, S., Adrot O. y Ragot-J. (1999). Parameter uncertainty computation in static linear models. IEEE Conference on Decision and Control. https://doi.org/10.1109/CDC.1999.830916

Puig, V., Quevedo J. Escobet T. y De las Heras S. (2002a). Robust fault detection approaches using interval models. IFAC World Congress. https://doi.org/10.3182/20020721-6-ES-1901.00407

Puig, V., Saludes J. y Quevedo J. (2003). Worst-case simulation of discrete linear timeinvariant interval dynamic systems. Reliable Computing 9(4), 251-290. https://doi.org/10.1023/A:1024666428387

Puig, V. y Quevedo, J. (2002b). Passive robust fault-detection using fuzzy parity equations. Mathematics and computers in Simulation 60, 193-207. https://doi.org/10.1016/S0378-4754(02)00014-9

Pulido, B. y Alonso, C. (2002). Possible conflicts, arrs, and conflicts. 13th International Workshop on Principles of Diagnosis (DX-02) pp. 122-128.

Reiter, R. (1987). A theory of diagnosis from the first principles. Artificial Intelligence 32, 57-95. https://doi.org/10.1016/0004-3702(87)90062-2

Shen, Q. y Leitch, R. (1993). Fuzzy qualitative simulation. IEEE Transactions on SMC. https://doi.org/10.1109/21.247887

Staroswiecki, M., Cassar J.P. y Declerk P. (2000). A structural framework for the design of FDI system in large scale industrial plants. In: Issues of Fault Diagnosis for Dynamic Systems (Clark RN Patton RJ, Frank PM, Ed.). Springer-Verlag. https://doi.org/10.1007/978-1-4471-3644-6_9

Staroswiecki, M. y P. Declerck (1989). Analytical redundancy in non-linear interconnected systems by means of structural analysis. IFAC/IMACS/IFORS Conference AIPAC'89. https://doi.org/10.1016/S1474-6670(17)54347-5

Travé-Massuyes, Escobet, T. Pons R. y Tornil S. (2001). The caen diagnosis system and its automatic modelling method. Computación y Sistemas.

Travé-Massuyes, Escobet, T. y Spanache S. (2003). Diagnosability analysis based on component supported analytical redundancy relations. Proceedings IFAC SAFEPROCESS pp. 887-890. https://doi.org/10.1016/S1474-6670(17)36594-1

Zhuang, Z. y Frank, P.M. (1997). Qualitative observer and its application to fault detection and isolation systems. Systems and Control Engineering 211, 253-262. https://doi.org/10.1243/0959651971539786

Abstract Views

1638
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912