Comparacion de estrategias de control predictivo estocástico no lineal aplicadas a la quimioterapia

Andrés Hernández-Rivera

https://orcid.org/0000-0002-8418-1333

Spain

Universidad de Sevilla image/svg+xml

Departamento de Ingeniería de Sistemas y Automática

Pablo Velarde

https://orcid.org/0000-0002-0503-829X

Spain

Universidad Loyola Andalucía image/svg+xml

Departamento de Ingeniería

Ascensión Zafra-Cabeza

https://orcid.org/0000-0001-9505-8050

Spain

Universidad de Sevilla image/svg+xml

Departamento de Ingeniería de Sistemas y Automática

José M. Maestre

https://orcid.org/0000-0002-4968-6811

Spain

Universidad de Sevilla image/svg+xml

Departamento de Ingeniería de Sistemas y Automática

|

Aceptado: 16-12-2024

|

Publicado: 10-01-2025

DOI: https://doi.org/10.4995/riai.2025.21950
Datos de financiación

Descargas

Palabras clave:

Control predictivo, Control óptimo estocástico, Farmacocinética y administración de fármacos, Control predictivo no lineal

Agencias de apoyo:

MCIN/AEI/10.13039/501100011033

Feder

UE

Resumen:

El modelado matemático de sistemas biomédicos puede ayudar a los profesionales oncológicos a diseñar ciclos de administración de fármacos más seguros y eficaces. Para lograr este objetivo, en el proceso de toma de decisiones se utiliza el modelo matemático del crecimiento tumoral y el impacto de la quimioterapia. Sin embargo, los sistemas biomédicos son propensos a un alto grado de incertidumbre, no solo por los errores de medición, sino también por la dinámica del sistema no modelada y la variabilidad entre pacientes. Para abordar este problema, se han aplicado restricciones probabilísticas al control del proceso de administración de fármacos, haciéndolo más robusto frente a perturbaciones. Este trabajo compara una versión no lineal y otra linealizada de las formulaciones estocásticas del control predictivo basado en modelo. Ambos algoritmos mejoran la eficacia y la seguridad del tratamiento, con diferencias en cuanto a conservadurismo y coste computacional.

Ver más Ver menos

Citas:

Berberich, J., Köhler, J., Müller, M. A., Allgöwer, F., 2022. Linear tracking MPC for nonlinear systems-Part I: The model-based case. IEEE Transactions on Automatic Control 67 (9), 4390-4405. https://doi.org/10.1109/TAC.2022.3166872

Bumroongsri, P., Kheawhom, S., 2015. Optimal dosing of breast cancer chemotherapy using robust MPC based on linear matrix inequalities. Engineering Journal 19 (1), 97-106. https://doi.org/10.4186/ej.2015.19.1.97

Camacho, E. F., Bordons, C., 2007. Constrained model predictive control. In: Model Predictive control. Springer, pp. 177-216. https://doi.org/10.1007/978-0-85729-398-5

Chen, T., Kirkby, N. F., Jena, R., 2012. Optimal dosing of cancer chemotherapy using model predictive control and moving horizon state/parameter estimation. Computer Methods and Programs in Biomedicine 108 (3), 973-983. DOI: 10.1016/j.cmpb.2012.05.011

https://doi.org/10.1016/j.cmpb.2012.05.011

Fabian, C., Sternson, L., El-serafi, M., Cain, L., Hearne, E., 1981. Clinical Pharmacology of Tamoxifen in Patients with Breast Cancer: correlation with clinical data. Cancer 48 (4), 876-882. https://doi.org/10.1002/1097-0142(19810815)48:4<876::AID-CNCR2820480403>3.0.CO;2-Q

Florian Jr, J. A., Eiseman, J. L., Parker, R. S., 2004. A nonlinear model predictive control algorithm for breast cancer treatment. IFAC Proceedings Volumes 37 (9), 929-940. https://doi.org/10.1016/S1474-6670(17)31928-6

Ghaffari Laleh, N., Loeffler, C. M. L., Grajek, J., Stanková, K., Pearson, A. T., Muti, H. S., Trautwein, C., Enderling, H., Poleszczuk, J., Kather, J. N., 2022. Classical mathematical models for prediction of response to chemotherapy and immunotherapy. PLOS Computational Biology 18 (2), e1009822. https://doi.org/10.1371/journal.pcbi.1009822

Gustafson, D. L., Bailey, D. B., 2019. 12 - cancer chemotherapy. In: Vail, D. M., Thamm, D. H., Liptak, J. M. (Eds.), Withrow and MacEwen's Small Animal Clinical Oncology (Sixth Edition). W.B. Saunders, St. Louis (MO), pp. 182-208. https://doi.org/10.1016/B978-0-323-59496-7.00012-8

Hernández-Rivera, A., Velarde, P., Zafra-Cabeza, A., Maestre, J., 2023a. A stochastic model predictive control approach to deal with cancerous tumor growth. In: Proceedings of the 9th International Conference on Control, Decision and Information Technologies (CoDIT). IEEE, Rome, Italy, pp. 2037-2042. https://doi.org/10.1109/CoDIT58514.2023.10284136

Hernández-Rivera, A., Velarde, P., Zafra-Cabeza, A., Maestre, J. M., 2023b. Modelado y control estoc'astico del crecimiento de c'elulas tumorales conquimioterapia usando MPC. In: Memorias de las XLIV Jornadas de Automática. Universidade da Coru˜na. Servizo de Publicaci'ons, pp. 41-46. https://doi.org/10.17979/spudc.9788497498609.041

Jurado, I., Maestre, J. M., Velarde, P., Ocampo-Mart'ınez, C., Fern'andez, I., Tejera, B. I., del Prado, J. R., 2016. Stock management in hospital pharmacy using chance-constrained model predictive control. Computers in Biology and Medicine 72, 248-255. https://doi.org/10.1016/j.compbiomed.2015.11.011

Khalili, P., Vatankhah, R., 2019. Derivation of an optimal trajectory and nonlinear adaptive controller design for drug delivery in cancerous tumor chemotherapy. Computers in Biology and Medicine 109, 195-206. https://doi.org/10.1016/j.compbiomed.2019.04.011

Knezevic, C. E., Clarke, W., 2020. Cancer chemotherapy: The case for therapeutic drug monitoring. Therapeutic drug monitoring 42 (1), 6-19. https://doi.org/10.1097/FTD.0000000000000701

Liliopoulos, S. G., Stavrakakis, G. S., 2021. Discrete ARMA Model Applied for Tumor Growth Inhibition modeling and LQR-based Chemotherapy Optimization. WSEAS Transactions on Biology and Biomedicine 18, 141-145. https://doi.org/10.37394/23208.2021.18.17

Maciejowski, J., 2002. Predictive control with constraints. Prentice Hall, Essex, England.

Malinzi, J., Basita, K. B., Padidar, S., Adeola, H. A., 2021. Prospect for application of mathematical models in combination cancer treatments. Informatics in Medicine Unlocked 23, 100534. https://doi.org/10.1016/j.imu.2021.100534

Mayne, D. Q., Rawlings, J. B., Rao, C. V., Scokaert, P. O., 2000. Constrained model predictive control: Stability and optimality. Automatica 36 (6), 789-814. https://doi.org/10.1016/S0005-1098(99)00214-9

Mesbah, A., 2016. Stochastic model predictive control: An overview and perspectives for future research. IEEE Control Systems Magazine 36 (6), 30-44. https://doi.org/10.1109/MCS.2016.2602087

Paluszczyszyn, D., Skworcow, P., Haas, O., Burnham, K. J., Mills, J. A., 2013. Model predictive control for real-time tumor motion compensation in adaptive radiotherapy. IEEE Transactions on Control Systems Technology 22 (2), 635-651. https://doi.org/10.1109/TCST.2013.2257774

Panjwani, B., Mohan, V., Rani, A., Singh, V., 2019. Optimal drug scheduling for cancer chemotherapy using two degree of freedom fractional order pid scheme. Journal of Intelligent & Fuzzy Systems 36 (3), 2273-2284. https://doi.org/10.3233/JIFS-169938

Parihar, S., Shah, P., Sekhar, R., Lagoo, J., 2022. Model predictive control and its role in biomedical therapeutic automation: A brief review. Applied System Innovation 5 (6), 118. https://doi.org/10.3390/asi5060118

Rokhforoz, P., Jamshidi, A. A., Sarvestani, N. N., 2017. Adaptive robust control of cancer chemotherapy with extended kalman filter observer. Informatics in Medicine Unlocked 8, 1-7. https://doi.org/10.1016/j.imu.2017.03.002

Sharpe, S., Dobrovolny, H. M., 2021. Predicting the effectiveness of chemotherapy using stochastic ODE models of tumor growth. Communications in Nonlinear Science and Numerical Simulation 101, 105883. https://doi.org/10.1016/j.cnsns.2021.105883

Velarde, P., Valverde, L., Maestre, J. M., Ocampo-Martínez, C., Bordons, C., 2017. On the comparison of stochastic model predictive control strategies applied to a hydrogen-based microgrid. Journal of Power Sources 343, 161- 173. https://doi.org/10.1016/j.jpowsour.2017.01.015

Ver más Ver menos