Control del confort térmico mediante aprendizaje por refuerzo en edificios

María del Mar Castilla

https://orcid.org/0000-0003-4073-7800

Spain

University of Almería image/svg+xml

CIESOL, Centro de Investigaciones en Energía Solar. Centro mixto UAL-CIEMAT

Carmen Campoy-Iniesta

Spain

University of Almería image/svg+xml

Dpto. de Informática

José Domingo Álvarez

https://orcid.org/0000-0003-2791-8105

Spain

University of Almería image/svg+xml

CIESOL, Centro de Investigaciones en Energía Solar. Centro mixto UAL-CIEMAT

|

Aceptado: 25-12-2024

|

Publicado: 09-01-2025

DOI: https://doi.org/10.4995/riai.2025.21944
Datos de financiación

Descargas

Palabras clave:

Aprendizaje por refuerzo, Control basado en el conocimiento, Aprendizaje Automático, Confort térmico, Automatización en edificios

Agencias de apoyo:

MCI-N/AEI/10.13039/501100011033

Unión Europea NextGenerationEU

Junta de Andalucía

Resumen:

El confort t ́ermico se puede definir como la sensaci ́on que garantiza la satisfacci ́on de una persona con el ambiente t ́ermicoque le rodea. Por tanto, garantizar esa sensaci ́on de bienestar de forma eficiente es un factor clave desde el punto de vista delahorro de energ ́ıa, ya que, minimiza los costes y el impacto ambiental derivado de asegurar un ambiente confortable. En estetrabajo, se propone un controlador que utiliza aprendizaje por refuerzo para mantener el confort t ́ermico de los usuarios del centrode investigaci ́on CIESOL. Para ello, se ha hecho uso de un modelo lineal simplificado de la temperatura del aire interior de unahabitaci ́on que ha sido validado con datos reales del edificio. Adem ́as, se han entrenado dos agentes diferentes: un agente deGradiente de Pol ́ıtica Determinista Profunda (DDPG) y un agente de Gradiente de Pol ́ıtica Determinista Profunda de Doble Retardo(TD3). Los resultados obtenidos en simulaci ́on muestran c ́omo el controlador propuesto es capaz de mantener la temperatura interioren la referencia establecida, incluso ante la presencia de perturbaciones. Finalmente, el desempe ̃no del controlador propuesto se hacomparado con un cl ́asico controlador Proporcional-Integral-Derivativo (PID). 

Ver más Ver menos

Citas:

ASHRAE, 2009. ASHRAE Handbook - Fundamentals. Refrigerating American Society of Heating and Air-Conditioning Engineers.

ASHRAE55, 1992. Thermal environment conditions for human occupancy. American Society of Heating Ventilating and Air-conditioning Engineers.

Bretones, M. D., Álvarez, J. D., del Mar Castilla, M., Berenguel, M., 2020. A fuzzy controller for thermal comfort and indoor air quality in a bioclimatic building. In: 2020 European Control Conference (ECC). IEEE, pp. 1029- 1036. https://doi.org/10.23919/ECC51009.2020.9143775

Bueno, A. M., de Paula Xavier, A. A., Broday, E. E., 2021. Evaluating the connection between thermal comfort and productivity in buildings: A systematic literature review. Buildings 11 (6), 244. https://doi.org/10.3390/buildings11060244

Castilla, M.,Álvarez, J., Normey-Rico, J., Rodríguez, F., 2014a. Thermal comfort control using a non-linear mpc strategy: A real case of study in a bioclimatic building. Journal of Process Control 24 (6), 703-713. https://doi.org/10.1016/j.jprocont.2013.08.009

Castilla, M., Álvarez, J. D., Rodríguez, F., Berenguel, M., 2014b. Comfort control in buildings. Springer. https://doi.org/10.1007/978-1-4471-6347-3

Coraci, D., Brandi, S., Hong, T., Capozzoli, A., 2023. Online transfer learning strategy for enhancing the scalability and deployment of deep reinforcement learning control in smart buildings. Applied Energy 333, 120598. https://doi.org/10.1016/j.apenergy.2022.120598

Espejel-Blanco, D. F., Hoyo-Montaño, J. A., Arau, J., Valencia-Palomo, G., García-Barrientos, A., Hernández-De-León, H. R., Camas-Anzueto, J. L., 2022. HVAC control system using predicted mean vote index for energy savings in buildings. Buildings 12 (1), 38. https://doi.org/10.3390/buildings12010038

Fanger, P. O., 1972. Thermal comfort analysis and applications in environment engeering. McGraw Hill.

Fanger, P. O., 1973. Assessment of man's thermal comfort in practice. British Journal of Industrial Medicine 30 (4), 313-324. https://doi.org/10.1136/oem.30.4.313

Fu, Q., Li, Z., Ding, Z., Chen, J., Luo, J., Wang, Y., Lu, Y., 2023. ED-DQN: An event-driven deep reinforcement learning control method for multi-zone residential buildings. Building and Environment 242, 110546. https://doi.org/10.1016/j.buildenv.2023.110546

Gao, C., Wang, D., 2023. Comparative study of model-based and model-free reinforcement learning control performance in HVAC systems. Journal of Building Engineering 74, 106852. https://doi.org/10.1016/j.jobe.2023.106852

Gao, G., Li, J., Wen, Y., 2020. Deepcomfort: Energy-efficient thermal comfort control in buildings via reinforcement learning. IEEE Internet of Things Journal 7 (9), 8472-8484. https://doi.org/10.1109/JIOT.2020.2992117

Ghaffarianhoseini, A., AlWaer, H., Omrany, H., Ghaffarianhoseini, A., Alalouch, C., Clements-Croome, D., Tookey, J., 2018. Sick building syndrome: are we doing enough? Architectural Science Review 61 (3), 99-121. https://doi.org/10.1080/00038628.2018.1461060

Halhoul Merabet, G., Essaaidi, M., Ben Haddou, M., Qolomany, B., Qadir, J., Anan, M., Al-Fuqaha, A., Abid, M. R., Benhaddou, D., 2021. Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques. Renewable and Sustainable Energy Reviews 144, 110969. https://doi.org/10.1016/j.rser.2021.110969

ISO7730, 1994. Moderate thermal environments. Determination of the PMV and PPD indices and specification of the conditions for thermal comfort. International Organisation for Standardisation.

Li, H., Xu, J., Zhao, Q., Wang, S., 2024. Economic model predictive control in buildings based on piecewise linear approximation of predicted mean vote index. IEEE Transactions on Automation Science and Engineering 21 (3), 3384-3395. https://doi.org/10.1109/TASE.2023.3279278

Li,W., Zhang, J., Zhao, T., Ren, J., 2021. Experimental study of an indoor temperature fuzzy control method for thermal comfort and energy saving using wristband device. Building and Environment 187, 107432. https://doi.org/10.1016/j.buildenv.2020.107432

Liang, Y., Shuqi, Q., Meng, Z., Chao, S., Tao, J., Xiaohong, G., 2021. A review of deep reinforcement learning for smart building energy management. IEEE Internet of Things Journal 8, 12046-12063. https://doi.org/10.1109/JIOT.2021.3078462

MathWorks, 2024. Reinforcement Learning Toolbox - Agents. Disponible online en: https://es.mathworks.com/help/reinforcement-learning/agents.html, (Ultimo acceso: 29 de mayo 2024).

Russell, S., Norvig, P., 2020. Artificial Intelligence: a modern approach. Fourth edition. NJ: Pearson.

Shao, T., 2021. Indoor environment intelligent control system of green building based on PMV index. Advances in Civil Engineering 2021 (1), 6619401. https://doi.org/10.1155/2021/6619401

Sutton, R., Barto, A., 2018. Reinforcement Learning: an introduction. Second edition. The MIT Press, Cambridge.

Taheri, S., Amiri, A. J., Razban, A., 2024. Real-world implementation of a cloud-based MPC for HVAC control in educational buildings. Energy Conversion and Management 305, 118270. https://doi.org/10.1016/j.enconman.2024.118270

Wang, J., Jiang, Y., Tang, C. Y., Song, L., 2023. Analysis of predicted mean vote-based model predictive control for residential HVAC systems. Building and Environment 229, 109952. https://doi.org/10.1016/j.buildenv.2022.109952

Yao, Y., Shekhar, D. K., 2021. State of the art review on model predictive control (MPC) in heating ventilation and air-conditioning (HVAC) field. Building and Environment 200, 107952. https://doi.org/10.1016/j.buildenv.2021.107952

Yue, B., Su, B., Xiao, F., Li, A., Li, K., Li, S., Yan, R., Lian, Q., Li, A., Li, Y., Fang, X., Liang, X., 2023. Energy-oriented control retrofit for existing HVAC system adopting data-driven MPC - Methodology, implementation and field test. Energy and Buildings 295, 113286. DOI: https://doi.org/10.1016/j.enbuild.2023.113286

Ver más Ver menos