Predicción de voltajes en la red eléctrica por interpolación Kriging

Carlos Moreno-Blazquez

https://orcid.org/0009-0001-2534-6185

Spain

Universidad de Sevilla image/svg+xml

Dpto. de Ingeniería de Sistemas y Automática

Filiberto Fele

https://orcid.org/0000-0002-2081-0014

Spain

Universidad de Sevilla image/svg+xml

Dpto. de Ingeniería de Sistemas y Automática

Daniel Limon

https://orcid.org/0000-0001-9334-7289

Spain

Universidad de Sevilla image/svg+xml

Dpto. de Ingeniería de Sistemas y Automática

Teodoro Alamo

https://orcid.org/0000-0002-0623-8146

Spain

Universidad de Sevilla image/svg+xml

Dpto. de Ingeniería de Sistemas y Automática

|

Aceptado: 18-09-2024

|

Publicado: 25-09-2024

DOI: https://doi.org/10.4995/riai.2024.21923
Datos de financiación

Descargas

Palabras clave:

Aprendizaje para el control, Métodos no paramétricos, Redes eléctricas inteligentes, Monitoreo y control de restricciones y seguridad, Control de recursos de energía renovable, Control basado en datos

Agencias de apoyo:

Ministerio de Ciencia, Innovación y Universidades

FEDER

Universidad de Sevilla

Unión Europea

Resumen:

En este trabajo, abordamos el problema de la predicción en línea de las trayectorias de voltaje e intensidad nodales en la red de distribución. Para esto, proponemos una formulación basada en datos utilizando la interpolación Kriging, una técnica de aprendizaje automático que ha mostrado aplicaciones prometedoras en el campo del control basado en datos. Producimos un oráculo de predicción no paramétrico que permite inferir trayectorias futuras directamente a partir de medidas de voltaje e intensidad en tiempo real. Además, proporcionamos una implementación algorítmica simple pero efectiva basada en el conocido esquema ISTA. Demostramos la efectividad de nuestra metodología para la predicción rápida (subsegundos) de la dinámica del voltaje mediante simulaciones.

Ver más Ver menos

Citas:

Alamo, T., Krupa, P., Limon, D., 2019. Gradient based restart FISTA. In: 2019 IEEE 58th Conference on Decision and Control (CDC). pp. 3936-3941. https://doi.org/10.1109/CDC40024.2019.9029983

Beck, A., 2017. First-order methods in optimization. SIAM. https://doi.org/10.1137/1.9781611974997

Beck, A., Teboulle, M., 2009. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences 2 (1), 183-202. https://doi.org/10.1137/080716542

Bertsekas, D. P., 2009. Convex optimization theory. Athena Scientific.

Car, M., Lesic, V., Vasak, M., 2021. Cascaded control of back-to-back conver-ter dc link voltage robust to grid parameters variation. IEEE Transactions onIndustrial Electronics 68 (3), 1994-2004. https://doi.org/10.1109/TIE.2020.2972467

Carnerero, A. D., Ramirez, D. R., Alamo, T., 2022. Probabilistic interval predictor based on dissimilarity functions. IEEE Transactions on Automatic Control 67 (12), 6842-6849. https://doi.org/10.1109/TAC.2021.3136137

Carnerero, A. D., Ramirez, D. R., Limon, D., Alamo, T., 2023. Kernel-based state-space kriging for predictive control. IEEE/CAA Journal of Automatica Sinica 10 (5), 1263-1275. https://doi.org/10.1109/JAS.2023.123459

CENELEC (European Committee for Electrotechnical Standardisation), 2011.Voltage characteristics of electricity supplied by public distribution systems.European Norm EN 50160.

Céspedes, M., Sun, J., 2012. Online grid impedance identification for adaptive control of grid-connected inverters. In: 2012 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, pp. 914-921. https://doi.org/10.1109/ECCE.2012.6342721

Chen, S., Billings, S. A., 1989. Representations of non-linear systems: the narmax model. International journal of control 49 (3), 1013-1032. https://doi.org/10.1080/00207178908559683

Cressie, N., 1990. The origins of Kriging. Mathematical geology 22, 239-252. https://doi.org/10.1007/BF00889887

Deakin, M., Greenwood, D. M., Taylor, P. C., Armstrong, P., Walker, S., 2021. Analysis of network impacts of frequency containment provided by domestic-scale devices using matrix factorization. IEEE Transactions on Power Systems 36 (6), 5697-5707. https://doi.org/10.1109/TPWRS.2021.3075855

Dobbe, R., van Westering, W., Liu, S., Arnold, D., Callaway, D., Tomlin, C.,2020. Linear single- and three-phase voltage forecasting and Bayesian sta-te estimation with limited sensing. IEEE Transactions on Power Systems35 (3), 1674-1683. https://doi.org/10.1109/TPWRS.2019.2955893

ENA Task Group on Statutory Voltage Limits, 2017. Statutory voltage limits at customers' terminals in the uk and options for future application of wider limits at low voltage. Tech. Rep. ETR 140, Energy Networks Association.

Francis, G., Burgos, R., Boroyevich, D.,Wang, F., Karimi, K., 2011. An algorithm and implementation system for measuring impedance in the dq domain. In: 2011 IEEE Energy Conversion Congress and Exposition. IEEE, pp. 3221-3228. https://doi.org/10.1109/ECCE.2011.6064203

Gupta, C. P., Milanovic, J. V., 2006. Probabilistic assessment of equipment trips due to voltage sags. IEEE Transactions on power delivery 21 (2), 711-718. https://doi.org/10.1109/TPWRD.2005.855447

Haberle, V., Huang, L., He, X., Prieto-Araujo, E., Smith, R. S., Dorfler, F., 2023. Mimo grid impedance identification of three-phase power systems: Parametric vs. nonparametric approaches. In: 2023 62nd IEEE Conference on Decision and Control (CDC). IEEE, pp. 542-548. https://doi.org/10.1109/CDC49753.2023.10383646

Hemyari, P., Nofziger, D., 1987. Analytical solution for punctual Kriging in onedimension. Soil Science Society of America journal 51 (1), 268-269. https://doi.org/10.2136/sssaj1987.03615995005100010058x

Huang, J., Corzine, K. A., Belkhayat, M., 2009. Small-signal impedance measurement of power-electronics-based ac power systems using line-to-line current injection. IEEE Transactions on Power Electronics 24 (2), 445-455. https://doi.org/10.1109/TPEL.2008.2007212

IEEE Power and Energy Society, 2021. IEEE draft standard for harmonic con-trol in electric power systems. IEEE P519/D5, January 2021, 1-30.

Kaur, G., Vaziri, M., 2006. Effects of distributed generation (dg) interconnections on protection of distribution feeders. In: 2006 IEEE Power Engineering Society General Meeting. pp. 8 pp.-.

Krige, D. G., 1981. Lognormal-de Wijsian geostatistics for ore evaluation.South African Institute of mining and metallurgy Johannesburg.

Leontaritis, I. J., Billings, S. A., 1985. Input-output parametric models for non-linear systems part i: deterministic non-linear systems. International journal of control 41 (2), 303-328. https://doi.org/10.1080/0020718508961129

Levin, A., Narendra, K., 1997. Identification of nonlinear dynamical systems using neural networks. In: Neural systems for control. Elsevier, pp. 129-160. https://doi.org/10.1016/B978-012526430-3/50007-6

Liu, Z., Liu, J., Liu, Z., 2020. Analysis, design, and implementation of impulse-injection-based online grid impedance identification with gridtied converters. IEEE Transactions on Power Electronics 35 (12), 12959-12976. https://doi.org/10.1109/TPEL.2020.2995016

Markovsky, I., Huang, L., D¨orfler, F., 2023. Data-driven control based on the behavioral approach: From theory to applications in power systems. IEEE Control Systems Magazine 43 (5), 28-68. https://doi.org/10.1109/MCS.2023.3291638

Martin, D., Nam, I., Siegers, J., Santi, E., 2013. Wide bandwidth threephase impedance identification using existing power electronics inverter. In: 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, pp. 334-341. https://doi.org/10.1109/APEC.2013.6520230

Matheron, G., 1967. Kriging or polynomial interpolation procedures. CIMMTransactions 70 (1), 240-244.

Matsui, H., Yamakawa, Y., 2023. Sparse estimation in ordinary kriging for functional data. arXiv preprint arXiv:2306.15537.

Merchán-Riveros, M. C., Albea, C., Seuret, A., 2024. Data-driven control de-sign for power converters approximated as switched affine systems and expe-rimental validation. IEEE Transactions on Circuits and Systems II: ExpressBriefs, 1-1. https://doi.org/10.1109/TCSII.2024.3379193

Merhy, D., Alamo, T., Stoica Maniu, C., Camacho, E. F., 2018. Zonotopic cons-trained kalman filter based on a dual formulation. In: 2018 IEEE Conferenceon Decision and Control (CDC). pp. 6396-6401. https://doi.org/10.1109/CDC.2018.8619177

Milano, F., Dörfler, F., Hug, G., Hill, D. J., Verbiˇc, G., 2018. Foundations and challenges of low-inertia systems (invited paper). In: 2018 Power Systems Computation Conference (PSCC). pp. 1-25. https://doi.org/10.23919/PSCC.2018.8450880

Nadales, J., Carnerero, A., Moreno-Blazquez, C., Haes-Ellis, R., Limon, D., 2023. Learning-based nmpc on soc platforms for real-time applications using parallel lipschitz interpolation. IFAC-PapersOnLine 56 (2), 6298-6303, 22nd IFAC World Congress. https://doi.org/10.1016/j.ifacol.2023.10.786

Nelles, O., 2020. Nonlinear dynamic system identification. Springer. https://doi.org/10.1007/978-3-030-47439-3

Ordonez, J. G., Nadales, J. M., Limon, D., Gordillo, F., 2021. Data-driven multirate predictive control of power inverters based on kinky inference. In: 2021 60th IEEE Conference on Decision and Control (CDC). pp. 4358- 4363. https://doi.org/10.1109/CDC45484.2021.9682886

Roinila, T., Messo, T., Santi, E., 2017. Mimo-identification techniques for rapid impedance-based stability assessment of three-phase systems in dq domain. IEEE Transactions on Power Electronics 33 (5), 4015-4022. https://doi.org/10.1109/TPEL.2017.2714581

Saccomando, G., Svensson, J., 2001. Transient operation of grid-connected voltage source converter under unbalanced voltage conditions. In: Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No. 01CH37248). Vol. 4. IEEE, pp. 2419-2424. https://doi.org/10.1109/IAS.2001.955960

Shen, Z., Jaksic, M., Mattavelli, P., Boroyevich, D., Verhulst, J., Belkhayat, M., 2013. Three-phase ac system impedance measurement unit (imu) using chirp signal injection. In: 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, pp. 2666-2673. https://doi.org/10.1109/APEC.2013.6520673

Willems, J. C., 1986. From time series to linear system-part i. finite dimen-sional linear time invariant systems. Automatica 22 (5), 561-580. https://doi.org/10.1016/0005-1098(86)90066-X

Xiao, D., Hu, H., Chen, S., Song, Y., Pan, P., Molinas, M., 2022. Rapid dqframe impedance measurement for three-phase grid based on interphase current injection and fictitious disturbance excitation. IEEE Transactions on Instrumentation and Measurement 71, 1-13. https://doi.org/10.1109/TIM.2022.3217851

Xiao, P., Venayagamoorthy, G., Corzine, K., 2007. A novel impedance measurement technique for power electronic systems. In: 2007 IEEE Power Electronics Specialists Conference. IEEE, pp. 955-960. https://doi.org/10.1109/PESC.2007.4342117

Zufferey, T., Renggli, S., Hug, G., 2020. Probabilistic state forecasting and optimal voltage control in distribution grids under uncertainty. Electric Power Systems Research 188, 106562. https://doi.org/10.1016/j.epsr.2020.106562

Ver más Ver menos