Gemelos funcionales para validar el software de control

Autores/as

DOI:

https://doi.org/10.4995/riai.2024.20830

Palabras clave:

Control de sistemas y células de fabricación flexible e inteligente, Automatización y control con autómatas programables (PLC), Supervisión y pruebas

Resumen

La innovación y los retos tecnológicos de la fabricación inteligente han provocado un incremento notable en la complejidad del software de control de los sistemas de producción automatizados (aPS) integrados en un entorno global interconectado. Una herramienta de pruebas muy potente para su validación es emplear plantas virtuales (uno de los pilares de la digitalización en la industria). En este contexto, este artículo contribuye con una metodología de diseño e implementación de gemelos funcionales construidos a partir de componentes funcionales básicos de librería, que no precisa herramientas comerciales de desarrollo de plantas virtuales. Como representación virtual de la funcionalidad de una entidad del sistema de producción, el gemelo funcional se empleará como herramienta de pruebas para probar la reacción del sistema de control tanto en producción normal como ante la inyección de fallos. La metodología se ha aplicado en la construcción de los gemelos funcionales que permiten validar el sistema de control de una célula de ensamblaje.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

María Luz Álvarez, University of the Basque Country

Departamento de Ingeniería de Sistemas y Automática

Isabel Sarachaga, University of the Basque Country

Departamento de Ingeniería de Sistemas y Automática

Arantzazu Burgos, University of the Basque Country

Departamento de Ingeniería de Sistemas y Automática

Nagore Iriondo, University of the Basque Country

Departamento de Ingeniería de Sistemas y Automática

Citas

Adamenko, D., Kunnen, S,. Pluhnau, R., Loibl, A., Nagarajah, A., 2020. Review and comparison of the methods of designing the Digital Twin. Procedia CIRP, 91, 27-32. https://doi.org/10.1016/j.procir.2020.02.146

ADEPA (Agence nationale pour le DEveloppment de la Production Automatisée), 1981. GEMMA (Guide d'Étude des Modes de Marches et d'Arrêts).

Aivaliotis, P., Georgoulias, K., Arkouli, Z., Makris, S., 2019. Methodology for enabling Digital Twin using advanced physics-based modelling in predictive maintenance. Procedia CIRP, 81, 417-422. https://doi.org/10.1016/j.procir.2019.03.072

Álvarez, M.L., Estévez, E., Sarachaga, I., Burgos, A. Marcos, M., 2013. A novel approach for supporting the development cycle of automation systems. International Journal of Advanced Manufacturing Technology, 68, 711-725. https://doi.org/10.1007/s00170-013-4793-4

Álvarez, M.L., Sarachaga, I., Burgos, A., Iriondo, N., 2023. Gemelo funcional para pruebas del software de sistemas de producción automatizados. XLIV Jornadas de Automática, 831-836. https://doi.org/10.17979/spudc.9788497498609.831

AutomationML, 2023. [Website] https://www.automationml.org/

Barbieri, G., Bertuzzi, A., Capriotti, A., Ragazzini, L., Gutierrez, D., Negri, E., Fumagalli, L., 2021.A virtual commissioning based methodology to integrate digital twins into manufacturing systems. Production Engineering, 15, 397-412. https://doi.org/10.1007/s11740-021-01037-3

Burgos, A., Iriondo, N., Álvarez, M.L., Sarachaga, I., 2021. MeiA 4.0 para abordar los retos actuales de formación en automatización. XLII Jornadas de Automática, 1-3 Sep., Castellón, España, 240-247. https://doi.org/10.17979/spudc.9788497498043.240

Burgos, Álvarez, M.L., A., Iriondo, N., Sarachaga, I., 2020. Metodología para la transformación de diseños en GRAFCET a código IEC 61131-3. Información Tecnológica, 31(6). https://doi.org/10.4067/S0718-07642020000600133

Cimino, Ch., Negri, E., Fumagalli, L., 2019. Review of digital twin applications in manufacturing. Computers in Industry, 113. https://doi.org/10.1016/j.compind.2019.103130

Chen, Ch., Fu, H., Zheng,Y., Tao, F., Liu, Y., 2023. The advance of digital twin for predictive maintenance: The role and function of machine learning. Journal of Manufacturing Systems, 71, 581-594. https://doi.org/10.1016/j.jmsy.2023.10.010

Cheng, J., Zhang, H., Tao, F., Juang, Ch.F., 2020. DT-II: Digital twin enhanced Industrial Internet reference framework towards smart manufacturing. Robotics and Computer-Integrated Manufacturing, 62, 101881. https://doi.org/10.1016/j.rcim.2019.101881

de Prada, C., Galán-Casado, S., Pitarch, J. L., Sarabia, D., Galán, A., Gutiérrez, G., 2022. Gemelos Digitales en la Industria de Procesos. Revista Iberoamericana de Automática e Informática Industrial, 19(3), 285-296. https://doi.org/10.4995/riai.2022.16901

Farhadi, A., Lee, S.K.H., Hinchy, E.P., O'Dowd, N.P., McCarthy, C.T., 2022. The development of a digital twin framework for an industrial robotic drilling process. Sensors 22(19), 7232. https://doi.org/10.3390/s22197232

Ferko, E., Bucaioni, A., Behnam,M., 2022. Architecting Digital Twins. IEEE Access, 10, 50335-50350. https://doi.org/10.1109/ACCESS.2022.3172964

Fuller, A., Fan, Z., Day, C., Barlow, C., 2020. Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access, 8, 108952-108971. https://doi.org/10.1109/ACCESS.2020.2998358

Ganser, P., Venek, T., Rudel, V., Bergs, T., 2021. DPART - a digital twin framework for the machining domain. MM MM Science Journal, 5134- 5141. https://doi.org/10.17973/MMSJ.2021_11_2021168

Hung, M.H., Lin, Y.C., Hsiao, H.C., Chen, C.C., Lai, K.C., Hsieh, Y.M., Tieng, H., Tsai, T.H., Huang, H.C., Yang, H.C., Cheng, F.T., 2022. A novel implementation framework of digital twins for intelligent manufacturing based on container technology and cloud manufacturing services. IEEE Transactions on Automation Science and Engineering, 19(3), 1614-30. https://doi.org/10.1109/TASE.2022.3143832

ISO 23247-2, 2021. Automation systems and integration - Digital twin framework for manufacturing - Part 2: Reference architecture. International Organization for Standardization. https://www.iso.org/standard/78743.html

ISO/IEC/IEEE 12207, 2017. Systems and software engineering - Software life cycle processes. International Organization for Standardisation. IEC PAS 63088, 2017. Smart manufacturing - Reference architecture model industry 4.0 (RAMI 4.0).

IEC 61131-3, 2013. IEC 61131-3, Programmable Controllers, Part 3: Programming Languages.

IEC 61512-1, 2002. Batch Control-Part 1: Models and terminology.

Iriondo, N., Orive, D., Casquero, O., Marcos, M., 2020. A proposal to introduce digitalization technologies within the automation learning process, IFAC-PapersOnLine, 53(2), 17592-17597. https://doi.org/10.1016/j.ifacol.2020.12.2674

Iriondo, N., Álvarez, M.L., Sarachaga, I., Burgos, A., 2022. Unidades de control encapsuladas para sistemas de automatización. XLIII Jornadas de Automática, 7-9 Sep., Logroño, España, 892-899. https://doi.org/10.17979/spudc.9788497498418.0892

Jones, D., Snider, Ch., Nassehi, A., Yon, J., Hicks, B., 2020. Characterising the Digital Twin: A systematic literature review. CIRP Journal of Manufacturing Science and Technology, 29, 36-52. https://doi.org/10.1016/j.cirpj.2020.02.002

Konstantinov, S., Assad, F., Ahmad, B., Vera, D.A., Harrison, R., 2022. Virtual Engineering and Commissioning to Support the Lifecycle of a Manufacturing Assembly System. Machines, 10, 939. https://doi.org/10.3390/machines10100939

Kritzinger, W., Karner, M., Traar, G., Henjes, J., Sihn, W., 2018. Digital Twin in manufacturing: A categorical literature review. IFAC-PapersOnLine, 51(11), 1016-1022. https://doi.org/10.1016/j.ifacol.2018.08.474

Liu, S., Bao, J., Zheng, P., 2023. A review of digital twin-driven machining: From digitization to intellectualization. Journal of Manufacturing Systems, 67, 361-378. https://doi.org/10.1016/j.jmsy.2023.02.010

Mihai, S., Yaqoob, M., Hung, D.V., Davis, W., Towakel, P., Raza, M., Karamanoglu, M., Barn, B., Shetve, D., Prasad, R.V., Venkataraman, H., Trestian, R., Nguyen, H.X., 2022. Digital Twins: A Survey on Enabling Technologies, Challenges, Trends and Future Prospects. IEEE Communications Surveys & Tutorials, 24(4), 2255-2291. https://doi.org/10.1109/COMST.2022.3208773

Montenegro-Bravo, J. S., Ruiz-Flórez, J. D., Romero-Ante, J. D., Manrique-Córdoba, J., Vivas Albán, O. A., Sabater-Navarro, J. M., 2023. Generador 3D de trayectorias libres de colisiones para un manipulador UR3e con pinza blanda. Revista Iberoamericana de Automática e Informática Industrial. https://doi.org/10.4995/riai.2023.19332

Moyne, J., Qamsane, Y., Balta, E. C., Kovalenko, I., Faris, J., Barton, K. Tilbury, D. M., 2020. A requirements driven digital twin framework: Specification and opportunities. IEEE Access, 8, 107781-107801. https://doi.org/10.1109/ACCESS.2020.3000437

Mylonas, G., Kalogeras, A., Kalogeras, G., Anagnostopoulos, C., Alexakos, C., Muñoz, L., 2021. Digital Twins From Smart Manufacturing to Smart Cities: A Survey. IEEE Access, 9, 143222-143249. https://doi.org/10.1109/ACCESS.2021.3120843

Negri, E., Assiro, G., Caioli, L., Fumagalli, L., 2019. A machine state-based digital twin development methodology. In Summer School F. Turco-Industrial Systems Engineering, 34-40.

Plakhotnik, D., Curutiu, A., Zhulavskyi, A., Beudaert, X., Munoa, J., Stautner, M., 2021. Framework for coupled digital twins in digital machining. MM Science Journal, 5093-7. https://doi.org/10.17973/MMSJ.2021_11_2021158

Shao, G., Helu, M., 2020. Framework for a digital twin in manufacturing: Scope and requirements,'' Manufacturing Letters, 24, 105-107. https://doi.org/10.1016/j.mfglet.2020.04.004

Semeraro, C., Lezoche, M., Panetto, H., Dassisti, M., 2021. Digital twin paradigm: A systematic literature review. Computers in Industry, 130, 103469. https://doi.org/10.1016/j.compind.2021.103469

Semeraro C, Lezoche M, Panetto H, Dassisti M., 2023a. Data-driven invariant modelling patterns for digital twin design. Journal of Industrial Information Integration, 31, 100424. https://doi.org/10.1016/j.jii.2022.100424

Semeraro, C., Aljaghoub, H., Abdelkareem, M. A., Alami, A. H., Dassisti, M., Olabi, A.G., 2023b. Guidelines for designing a digital twin for Li-ion battery: A reference methodology. Energy, 284, 128699. https://doi.org/10.1016/j.energy.2023.128699

Orive, D., Iriondo, N., Burgos, A., Sarachaga, I., Alvarez, M.L., Marcos, M., 2019. Fault injection in Digital Twins as a means to test the response to process faults at virtual commissioning. 24th IEEE Conference on Emerging Technologies and Factory Automation (ETFA), 1230-1234. https://doi.org/10.1109/ETFA.2019.8869334

Prados, C., Hernando, M., Gambao, E., Brunete, A., 2022. ROMERIN: Organismo robótico escalador basado en patas modulares con ventosas activas. Revista Iberoamericana de Automática e Informática Industrial, 20(2), 175-186. https://doi.org/10.4995/riai.2022.18749

Qamsane, Y., Moyne, J., Toothman, M., Kovalenko, I., Balta, E.C., Faris, J., Tilbury, D.M., Barton, K., 2021. A Methodology to Develop and Implement Digital Twin Solutions for Manufacturing Systems. IEEE Access, 9, 44247-44265. https://doi.org/10.1109/ACCESS.2021.3065971

Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y.,Wang, L., Nee, A.Y.C., 2021. Enabling technologies and tools for digital twin. Journal of Manufacturing Systems, 58, 3-21. https://doi.org/10.1016/j.jmsy.2019.10.001

Rasheed, A., San, O., Kvamsdal, T., 2020. Digital Twin: Values, Challenges and Enablers From a Modeling Perspective. IEEE Access, 8, 21980-22012. https://doi.org/10.1109/ACCESS.2020.2970143

Schroeder, G.N., Steinmetz, C., Rodrigues, R.N., Henriques, R.V.B., Rettberg, A., Pereira, C.E., 2021. A Methodology for Digital Twin Modeling and Deployment for Industry 4.0. Proceedings of the IEEE, 109(4), 556-567. https://doi.org/10.1109/JPROC.2020.3032444

Shao, G., Frechette, S., Srinivasan, V., 2023. An Analysis of the New ISO 23247 Series of Standards on Digital Twin Framework for Manufacturing. Manufacturing Science and Engineering Conference, 12-16 Junio, New Brunswick, USA. https://doi.org/10.1115/MSEC2023-101127

Tao, F., Zhang, H., Liu, A., Nee, A. Y. C., 2019. Digital Twin in Industry: State-of-the-Art. IEEE Transactions on Industrial Informatics, 15(4), 2405- 2415. https://doi.org/10.1109/TII.2018.2873186

Wang, P., Luo, M., 2021. A digital twin-based big data virtual and real fusion learning reference framework supported by industrial internet towards smart manufacturing. Journal of Manufacturing Systems, 58, 16-32. https://doi.org/10.1016/j.jmsy.2020.11.012

Zhang, Y. F., Shao, Y. Q., Wang, J. F., Li, S. Q., 2020. Digital Twin-based Production Simulation of Discrete Manufacturing Shop-floor for Onsite Performance Analysis. IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 1107- 1111. https://doi.org/10.1109/IEEM45057.2020.9309928

Zhou, X., Xu, X., Liang, W., Zeng, Z., Shimizu, S., Yang, L.T., Jin, Q., 2022. Intelligent Small Object Detection for Digital Twin in Smart Manufacturing with Industrial Cyber-Physical Systems. IEEE Transactions on Industrial Informatics, 18(2), 1377-1386. https://doi.org/10.1109/TII.2021.3061419

Descargas

Publicado

15-01-2024

Cómo citar

Álvarez, M. L., Sarachaga, I., Burgos, A. . y Iriondo, N. . (2024) «Gemelos funcionales para validar el software de control », Revista Iberoamericana de Automática e Informática industrial, 21(2), pp. 159–170. doi: 10.4995/riai.2024.20830.

Número

Sección

Artículos

Datos de los fondos