Diseño de par calculado robusto no lineal basado en observación: una solución por medio de desigualdades matriciales lineales

Jesús Alonso Díaz

Mexico

Sonora Institute of Technology image/svg+xml

Departamento de Ingeniería Eléctrica y Electrónica

Víctor Estrada-Manzo

https://orcid.org/0000-0002-2902-8424

Mexico

Universidad Politécnica de Pachuca image/svg+xml

Departamento de Mecatrónica

Miguel Bernal

https://orcid.org/0000-0003-3488-6180

Mexico

Sonora Institute of Technology image/svg+xml

Departamento de Ingeniería Eléctrica y Electrónica

|

Aceptado: 05-03-2024

|

Publicado: 07-03-2024

DOI: https://doi.org/10.4995/riai.2024.20765
Datos de financiación

Descargas

Palabras clave:

Sistemas Lagrangianos y Hamiltonianos, Desigualdades matriciales lineales robustas, Métodos de Lyapunov, Aplicación de análisis y diseño no lineales, Diseño de observadores y filtros no lineales

Agencias de apoyo:

Consejo Nacional de Ciencia y Tecnología de México (CONAHCYT)

Instituto Tecnológico de Sonora

Resumen:

En este artículo, la robustez de la bien conocida técnica de par calculado es mejorada en dos aspectos: por un lado, la ley de control de bucle interno se hace depender exclusivamente de señales generadas por el usuario cuya precisión ya no se ve afectada por ruido o errores numéricos; por otro lado, la ley de control de bucle externo se hace depender de posiciones medibles y velocidades estimadas por un observador, lo que reduce el costo de implementación. Tanto el controlador como el observador son estructuras no lineales diseñadas por medio de desigualdades matriciales lineales que resultan de reescribir en forma convexa el sistema del error de seguimiento y el sistema del error de observación por medio de una factorización recientemente aparecida en la literatura para luego aplicar el método directo de Lyapunov. La propuesta de diseño es puesta a prueba en diversos sistemas Lagrange-Euler donde las ventajas en comparación con el par calculado tradicional pueden ser apreciadas tanto en simulación como en tiempo real.

Ver más Ver menos

Citas:

Boyd, S., Ghaoui, L. E., Feron, E., Belakrishnan, V., 1994. Linear Matrix Inequalities in System and Control Theory. Vol. 15. SIAM: Studies In Applied Mathematics, Philadelphia, USA. https://doi.org/10.1137/1.9781611970777

Canudas Wit, C. D., Åström, K. J., Fixot, N., 1990. Computed torque control via a non-linear observer. International Journal of Adaptive Control and Signal Processing 4 (6), 443-452. https://doi.org/10.1002/acs.4480040603

Charlet, B., Lévine, J., Marino, R., 1989. On dynamic feedback linearization. Systems & Control Letters 13 (2), 143-151. https://doi.org/10.1016/0167-6911(89)90031-5

Chen, C. T., 1984. Linear System Theory and Design. Saunders College Publishing, New York, USA.

Corless, M., Leitmann, G., 1981. Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Transactions on Automatic Control 26 (5), 1139-1144. https://doi.org/10.1109/TAC.1981.1102785

Craig, J. J., 2005. Introduction to robotics: mechanics and control, 3/E. Pearson Education International.

Díaz, J. A., Bernal, M., 2019. A novel LMI computed-torque technique for stabilization of underactuated systems. In: Congreso Nacional de Control Automatico. pp. 797-802.

Díaz, J. A., Ibarra, J., Bernal, M., 2020. Improving robustness of computedtorque schemes via LMI-based nonlinear feedback. In: 2020 17th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). IEEE, pp. 1-6.

Duan, G., Yu, H., 2013. LMIs in Control Systems: Analysis, Design and Applications. CRC Press, Boca Raton, Florida. https://doi.org/10.1201/b15060

Gahinet, P., Nemirovski, A., Laub, A. J., Chilali, M., 1995. LMI Control Toolbox. Math Works, Natick, USA.

Guerra, T. M., Bernal, M., Kruszewski, A., Afroun, M., 2007. A way to improve results for the stabilization of continuous-time fuzzy descriptor models. In: 46th IEEE Conference on Decision and Control. pp. 5960-5964. https://doi.org/10.1109/CDC.2007.4434726

Hagenmeyer, V., Delaleau, E., 2003. Exact feedforward linearization based on differential flatness. International Journal of Control 76 (6), 537-556. https://doi.org/10.1080/0020717031000089570

Han, S., Wang, H., Tian, Y., Christov, N., 2020. Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton. ISA transactions 97, 171-181. https://doi.org/10.1016/j.isatra.2019.07.030

Isidori, A., 1995. Nonlinear Control Systems, 3rd Edition. Springer, London. https://doi.org/10.1007/978-1-84628-615-5

Iwashiro, M., Furuta, K., Astrom, K. J., 1996. Energy based control of pendulum. In: Proceeding of the 1996 IEEE International Conference on Control Applications IEEE International Conference on Control Applications held together with IEEE International Symposium on Intelligent Contro. IEEE, pp. 715-720.

Khalil, H., 2014. Nonlinear Control. Prentice Hall, NewJersey, USA.

Khalil, H. K., 1981. Asymptotic stability of nonlinear multiparameter singularly perturbed systems. Automatica 17 (6), 797-804. https://doi.org/10.1016/0005-1098(81)90067-4

Lee, C., Chen, M., 1983. A suboptimal control design for mechanical manipulators. In: 1983 American Control Conference. IEEE, pp. 1056-1061. https://doi.org/10.23919/ACC.1983.4788271

Lendek, Z., Guerra, T., Babuska, R., De-Schutter, B., 2010. Stability Analysis and Nonlinear Observer Design Using Takagi-Sugeno Fuzzy Models. Springer-Verlag, Netherlands. https://doi.org/10.1007/978-3-642-16776-8

Lewis, F., Dawson, D., Abdallah, C., 2003. Robot manipulator control: theory and practice. CRC Press. https://doi.org/10.1201/9780203026953

Lewis, F. L., 1992. Applied optimal control and estimation. Prentice Hall PTR. Marion, J. B., 1965. Classical dynamics. Academic Press.

Merat, F., 1987. Introduction to robotics: Mechanics and control. IEEE Journal on Robotics and Automation 3 (2), 166-166. https://doi.org/10.1109/JRA.1987.1087086

Mohammed, R. H., Elnaghi, B. E., Bendary, F. A., Elserfi, K., 2018. Trajectory tracking control and robustness analysis of a robotic manipulator using advanced control techniques. Int. J. Eng. Manuf.(IJEM) 8 (6), 42-54. https://doi.org/10.5815/ijem.2018.06.04

Nunes, E. V., Hsu, L , 2010. Global tracking for robot manipulators using a simple causal PD controller plus feedforward. Robotica 28 (1), 23-34. https://doi.org/10.1017/S0263574709005529

Oliveira, M., Skelton, R., 2001. Stability tests for constrained linear systems. In: Perspectives in robust control. Vol. 268 of Lecture Notes in Control and Information Sciences. Springer-Verlag, Berlin, pp. 241-257. https://doi.org/10.1007/BFb0110624

Palli, G., Melchiorri, C., De Luca, A., 2008. On the feedback linearization of robots with variable joint stiffness. In: 2008 IEEE international conference on robotics and automation. IEEE, pp. 1753-1759. https://doi.org/10.1109/ROBOT.2008.4543454

Piltan, F., Yarmahmoudi, M. H., Shamsodini, M., Mazlomian, E., Hosainpour, A., 2012. Puma-560 robot manipulator position computed torque control methods using matlab/simulink and their integration into graduate nonlinear control and matlab courses. International Journal of Robotics and Automation 3 (3), 167-191.

Quanser, I., 2006. Mechatronics Control Kit User's Manual (Instructor). Mathworks, inc, Natick, MA.

Quintana, D., Estrada-Manzo, V., Bernal, M., 2021. An exact handling of the gradient for overcoming persistent problems in nonlinear observer design via convex optimization techniques. Fuzzy Sets and Systems 416, 125-140. https://doi.org/10.1016/j.fss.2020.04.012

Santos, L., Cortesão, R., 2018. Computed-torque control for robotic-assisted tele-echography based on perceived stiffness estimation. IEEE Transactions on Automation Science and Engineering 15 (3), 1337-1354. https://doi.org/10.1109/TASE.2018.2790900

Shin, K., McKay, N., 1985. Minimum-time control of robotic manipulators with geometric path constraints. IEEE Transactions on Automatic Control 30 (6), 531-541. https://doi.org/10.1109/TAC.1985.1104009

Sturm, J., 1999. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software 11-12, 625-653. https://doi.org/10.1080/10556789908805766

Tanaka, K., Wang, H., 2001. Fuzzy Control Systems Design and Analysis: A linear matrix inequality approach. John Wiley & Sons, New York. https://doi.org/10.1002/0471224596

Taniguchi, T., Tanaka, K., Wang, H., 2001. Model construction, rule reduction and robust compensation for generalized form of Takagi-Sugeno fuzzy systems. IEEE Transactions on Fuzzy Systems 9 (2), 525-537. https://doi.org/10.1109/91.940966

Visioli, A., Legnani, G., 2002. On the trajectory tracking control of industrial scara robot manipulators. IEEE Transactions on Industrial Electronics 49 (1), 224-232. https://doi.org/10.1109/41.982266

Xie, X., Yue, D., Ma, T., Zhu, X., 2014. Further studies on control synthesis of discrete-time TS fuzzy systems via augmented multi-indexed matrix approach. IEEE Transactions on Cybernetics 44 (12), 2784-2791. https://doi.org/10.1109/TCYB.2014.2316491

Ver más Ver menos