Uso de GPUs en aplicaciones de tiempo real: Una revisión de técnicas para el análisis y optimización de parámetros temporales

Autores/as

DOI:

https://doi.org/10.4995/riai.2023.20321

Palabras clave:

Sistemas embebidos, Sistemas de tiempo real, Planificación, Procesadores heterogéneos, GPUs

Resumen

La conducción autónoma despierta un interés cada vez mayor en la industria, no solo en el sector de la automoción, sino también en el transporte de personas o mercancías por carretera o ferrocarril y en entornos de fabricación más controlados. Los sistemas ciber-físicos que se están proponiendo para este tipo de aplicaciones requieren de una gran capacidad de cómputo (arquitecturas hardware con varios núcleos, GPUs, NPUs…) para poder atender y reaccionar a una múltiple y compleja cantidad de sensores (cámaras, radar, LiDAR, medida de distancia, etc.). Por otro lado, este tipo de sistemas debe atender a requisitos de seguridad funcional y también de tiempo real. Este último aspecto plantea retos en los que se está trabajando intensamente y en los que aún quedan muchas cuestiones por resolver. En este trabajo, se hace una revisión de la literatura más reciente del uso de arquitecturas heterogéneas con GPUs en aplicaciones de tiempo real. Estos trabajos proponen soluciones para la estimación de cotas de tiempos de ejecución y respuesta temporal, proponiendo diferentes estrategias de optimización destacando la mitigación de interferencia en la memoria.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Iosu Gomez, Ikerlan

Área de Sistemas Embebidos Confiables, Ikerlan Centro de Investigación Tecnológico, Basque Research and Technology Alliance (BRTA)

Grupo de Ingeniería Software y Tiempo Real, Universidad de Cantabria

Unai Díaz de Cerio, Ikerlan

Área de Sistemas Embebidos Confiables, Ikerlan Centro de Investigación Tecnológico, Basque Research and Technology Alliance (BRTA)

Jorge Parra, Ikerlan

Área de Sistemas Embebidos Confiables, Ikerlan Centro de Investigación Tecnológico, Basque Research and Technology Alliance (BRTA)

Juan M. Rivas, Universidad de Cantabria

Grupo de Ingeniería Software y Tiempo Real

J. Javier Gutiérrez, Universidad de Cantabria

Grupo de Ingeniería Software y Tiempo Real

Citas

Abeni, L., Buttazzo, G., Superiore, S., Anna, S., 1998. Integrating multimedia applications in hard real-time systems. Real-Time Systems Symposium. https://doi.org/10.1109/REAL.1998.739726

Aghilinasab, H., Ali,W., Yun, H., Pellizzoni, R., 2020. Dynamic memory bandwidth allocation for real-time gpu-based soc platforms. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39, 3348 -3360. https://doi.org/10.1109/TCAD.2020.3012210

Ali, W., Yun, H., 2018. Protecting real-time gpu kernels on integrated cpu-gpu soc platforms. Leibniz International Proceedings in Informatics, LIPIcs 106. https://doi.org/10.1109/RTAS.2017.26

Amert, T., Otterness, N., Yang, M., Anderson, J.H., Smith, F.D., 2018. Gpu scheduling on the nvidia tx2: Hidden details revealed. Real-Time Systems Symposium January, 104-115. https://doi.org/10.1109/RTSS.2017.00017

Andreozzi, M., Gabrielli, G., Venu, B., Travaglini, G., 2022. Industrial challenge 2022: A high-performance real-time case study on arm. Leibniz International Proceedings in Informatics, LIPIcs 231. doi:10.4230/LIPIcs.ECRTS.2022.1

Ayala-Barbosa, J.A., Mendez-Monroy, P.E., 2022. A new preemptive task scheduling framework for heterogeneous embedded systems. ACM International Conference Proceeding Series , 77-84. https://doi.org/10.1145/3543712.3543756

Baek, I., Harding, M., Kanda, A., Choi, K.R., Samii, S., Rajkumar, R.R., 2020. Carss: Client-aware resource sharing and scheduling for heterogeneous applications. IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS 2020-April, 324-335. https://doi.org/10.1109/RTAS48715.2020.00008

Bakita, J., Anderson, J.H., 2023. Hardware compute partitioning on nvidia gpus*. IEEE Real Time Technology and Applications Symposium (RTAS) , 54-66. https://doi.org/10.1109/RTAS58335.2023.00012

Basaran, C., Kang, K.D., 2012. Supporting preemptive task executions and memory copies in gpgpus. 2012 24th Euromicro Conference on Real-Time Systems , 287-296. https://doi.org/10.1109/ECRTS.2012.15

Bateni, S., Wang, Z., Zhu, Y., Hu, Y., Liu, C., 2020. Co-optimizing performance and memory footprint via integrated cpu/gpu memory management, an implementation on autonomous driving platform. IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS 2020-April, 310-323. https://doi.org/10.1109/RTAS48715.2020.00007

Bechtel, M., Yun, H., 2023. Analysis and mitigation of shared resource contention on heterogeneous multicore: An industrial case study. doi:arXiv:2304.13110.

Boniol, F., Mohan, S., 2022. IEEE RTSS 2022 industry challenge. URL: http://2022.rtss.org/industry-session

Calderón, A.J., Kosmidis, L., Nicolas, C.F., Cazorla, F.J., Onaindia, P., 2019. Understanding and exploiting the internals of gpu resource allocation for critical systems. IEEE/ACM International Conference on Computer- Aided Design, Digest of Technical Papers, ICCAD 2019-November. https://doi.org/10.1109/ICCAD45719.2019.8942170

Calderón, A.J., Kosmidis, L., Nicol'as, C.F., de Lasala, J., Larrañaga, I., 2021. Assessing and improving the suitability of model-based design for gpuaccelerated railway control systems. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 12800 LNCS, 68-83. https://doi.org/10.1007/978-3-030-81682-7

Calderón, A.J., Torres, C., Kosmidis, L., Fernando, C., Ram'ırez, N., Javier, F., Almeida, C., 2022. Real-Time High-Performance Computing for Embedded Control Systems. https://doi.org/10.5821/dissertation-2117-371621

Capodieci, N., Burgio, P., 2016. Efficient implementation of genetic algorithms on gp-gpu with scheduled persistent cuda threads. International Symposium on Parallel Architectures, Algorithms and Programming, PAAP 2016- January, 6-12. https://doi.org/10.1109/PAAP.2015.13

Capodieci, N., Burgio, P., Cavicchioli, R., Olmedo, I.S., Solieri, M., Bertogna, M., 2022. Real-time requirements for adas platforms featuring shared memory hierarchies. IEEE Design and Test 39, 35-41. https://doi.org/10.1109/MDAT.2020.3013828

Capodieci, N., Cavicchioli, R., Bertogna, M., Paramakuru, A., 2018. Deadlinebased scheduling for gpu with preemption support. Real-Time Systems Symposium 2018-December, 119-130. https://doi.org/10.1109/RTSS.2018.00021

Capodieci, N., Cavicchioli, R., Valente, P., Bertogna, M., 2017. Sigamma: Server based integrated gpu arbitration mechanism for memory accesses. ACM International Conference Proceeding Series Part F131837, 48-57. https://doi.org/10.1145/3139258.3139270

Casini, D., Biondi, A., 2022. Placement of chains of real-time tasks on heterogeneous platforms under edf scheduling. Proceedings - 2022 25th Euromicro Conference on Digital System Design, DSD 2022 , 149- 156. https://doi.org/10.1109/DSD57027.2022.00029

Casini, D., Pazzaglia, P., Biondi, A., Natale, M.D., 2022. Optimized partitioning and priority assignment of real-time applications on heterogeneous platforms with hardware acceleration. Journal of Systems Architecture 124. https://doi.org/10.1016/j.sysarc.2022.102416

Cavicchioli, R., Capodieci, N., Bertogna, M., 2017. Memory interference characterization between cpucores and integrated gpus in mixed-criticality platforms. IEEE Conference Emerging Technologies and Factory Automation. https://doi.org/10.1109/ETFA.2017.8247615

Cavicchioli, R., Capodieci, N., Bertogna, M., 2020. Contending memory in heterogeneous socs:evolution in nvidia tegra embedded platforms. 2020 IEEE 26th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA). https://doi.org/10.1109/RTCSA50079.2020.9203722

Chen, G., Zhao, Y., Shen, X., Zhou, H., 2017. Effisha: A software framework for enabling efficient preemptive scheduling of gpu. 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming 52, 3-16. https://doi.org/10.1145/3018743.3018748

Cucinotta, T., Amory, A., Ara, G., Paladino, F., Natale, M.D., 2023. Multi-criteria optimization of real-time dags on heterogeneous platforms under p-edf. ACM Transactions on Embedded Computing Systems. https://doi.org/10.1145/3592609

Dasari, D., Akesson, B., N'elis, V., Awan, M.A., Petters, S.M., 2013. Identifying the sources of unpredictability in cots-based multicore systems. 8th IEEE International Symposium on Industrial Embedded Systems (SIES 2013) , 39-48. https://doi.org/10.1109/SIES.2013.6601469

Diewald, A., Barner, S., Saidi, S., 2019. Combined data transfer response time and mapping exploration in mpsocs. Euromicro Conference on Real-Time System (ECRTS) .

Elliott, G.A., Ward, B.C., Anderson, J.H., 2013. Gpusync: A framework for real-time gpu management. Real-Time Systems Symposium , 33- 44. https://doi.org/10.1109/RTSS.2013.12

Fang, J., Wang, M., Wei, Z., 2020. A memory scheduling strategy for eliminating memory access interference in heterogeneous system. Journal of Supercomputing 76, 3129-3154. https://doi.org/10.1007/s11227-019-03135-7

Fickenscher, J., Reinhart, S., Hannig, F., Teich, J., Bouzouraa, M.E., 2017. Convoy tracking for adas on embedded gpus. 2017 IEEE Intelligent Vehicles Symposium (IV) , 959-965. https://doi.org/10.1109/IVS.2017.7995839

Forsberg, B., Benini, L., Marongiu, A., 2019. Taming data caches for predictable execution on gpu-based socs. 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE) , 650-653. https://doi.org/10.23919/DATE.2019.8715255

Forsberg, B., Benini, L., Marongiu, A., 2021. Heprem: A predictable execution model for gpu-based heterogeneous socs. IEEE Transactions on Computers 70, 17-29. https://doi.org/10.1109/TC.2020.2980520

Forsberg, B., Marongiu, A., Benini, L., 2017a. Gpuguard: Towards supporting a predictable execution model for heterogeneous soc. Design, Automation and Test in Europe, DATE 2017 , 318-321. https://doi.org/10.23919/DATE.2017.7927008

Forsberg, B., Palossi, D., Marongiu, A., Benini, L., 2017b. Gpu-accelerated real-time path planning and the predictable execution model. Procedia Computer Science 108, 2428-2432. https://doi.org/10.1016/j.procs.2017.05.219

Gupta, K., Stuart, J.A., Owens, J.D., 2012. A study of persistent threads style gpu programming for gpgpu workloads. 2012 Innovative Parallel Computing (InPar). https://doi.org/10.1109/InPar.2012.6339596

Hamann, A., Dasari, D., Wurst, F., Sa˜nudo, I., Capodieci, N., Burgio, P., 2019. Waters industrial challenge 2019 final.

Hartmann, C., Margull, U., 2019. Gpuart - an application-based limited preemptive gpu real-time scheduler for embedded systems. Journal of Systems Architecture 97, 304-319. https://doi.org/10.1016/j.sysarc.2018.10.005

Houdek, P., Sojka, M., Hanzalek, Z., 2017. Towards predictable execution model on arm-based heterogeneous platforms. 2017 IEEE 26th International Symposium on Industrial Electronics (ISIE) , 1297-1302. https://doi.org/10.1109/ISIE.2017.8001432

Houssam-Eddine, Z., Capodieci, N., Cavicchioli, R., Lipari, G., Bertogna, M., 2021. The hpc-dag task model for heterogeneous real-time systems. IEEE Transactions on Computers 70, 1747-1761. https://doi.org/10.1109/TC.2020.3023169

Hötger, R., Ki, J., Bui, T.B., Igel, B., Spinczyk, O., 2019. Cpu-gpu response time and mapping analysis for high-performance automotive systems. Euromicro Conference on Real-Time System (ECRTS) .

Jain, S., Baek, I., Wang, S., Rajkumar, R., 2019. Fractional gpus: Softwarebased compute and memory bandwidth reservation for gpus. IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS 2019-April, 29-41. https://doi.org/10.1109/RTAS.2019.00011

Janzèn, J., Black-Schaffer, D., Hugo, A., 2016. Partitioning gpus for improved scalability. 28th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD) , 42-49. https://doi.org/10.1109/SBAC-PAD.2016.14

Kang, W., Lee, K., Lee, J., Shin, I., Chwa, H.S., 2021. Lalarand: Flexible layer-by-layer cpu/gpu scheduling for real-time dnn tasks. Proceedings - Real-Time Systems Symposium 2021-December, 329-341. https://doi.org/10.1109/RTSS52674.2021.00038

Kato, S., McThrow, M., Maltzahn, C., Brandt, S., 2012. Gdev: First-class gpu resource management in the operating system. 2012 USENIX Annual Technical Conference (USENIX ATC 12) , 401-412.

Khronos, 2023. Opencl. URL: https://www.khronos.org/opencl. (Last accessed 2023).

Kim, H., Patel, P., Wang, S., Rajkumar, R.R., 2018. A server-based approach for predictable gpu access with improved analysis. Journal of Systems Architecture 88, 97-109. https://doi.org/10.1016/j.sysarc.2018.05.003

Kim, H., Rajkumar, R., 2016. Real-time cache management for multi-core virtualization. 13th International Conference on Embedded Software, EMSOFT 2016. https://doi.org/10.1145/2968478.2968480

Kim, S., Jung, C., Kim, Y., 2022. Comparative analysis of gpu stream processing between persistent and non-persistent kernels. 13th International Conference on Information and Communication Technology Convergence (ICTC) 2022-October, 2330-2332. https://doi.org/10.1109/ICTC55196.2022.9952789

Kloda, T., Solieri, M., Mancuso, R., Capodieci, N., Valente, P., Bertogna, M., 2019. Deterministic memory hierarchy and virtualization for modern multi-core embedded systems. IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS) 2019-April, 1-14. https://doi.org/10.1109/RTAS.2019.00009

Krawczyk, L., Wolff, C., Bazzal, M., Govindarajan, R.P., 2019. An analytical approach for calculating end-to-end response times in autonomous driving applications. Euromicro Conference on Real-Time System (ECRTS) .

Lee, H., Kim, H., Kim, C., Han, H., Seo, E., 2021. Idempotence-based preemptive gpu kernel scheduling for embedded systems. IEEE Transactions on Computers 70, 332-346. https://doi.org/10.1109/TC.2020.2988251

Li, D., Aamodt, T.M., 2016. Inter-core locality aware memory scheduling. IEEE Computer Architecture Letters 15, 25-28. https://doi.org/10.1109/LCA.2015.2435709

Li, R., Hu, T., Jiang, X., Li, L., Xing, W., Deng, Q., Guan, N., 2023. Rosgm: A real-time gpu management framework with plug-in policies for ros 2. IEEE Real Time Technology and Applications Symposium (RTAS) , 93- 105. https://doi.org/10.1109/RTAS58335.2023.00015

Lim, Y., Kim, H., 2019. Cache-aware real-time virtualization for clustered multi-core platforms. IEEE Access 7, 128628-128640. https://doi.org/10.1109/ACCESS.2019.2939859

Liu, L., Cui, Z., Xing, M., Bao, Y., Chen, M., Wu, C., 2012. A software memory partition approach for eliminating bank-level interference in multicore systems. 2012 21st International Conference on Parallel Architectures and Compilation Techniques (PACT) , 367-375. https://doi.org/10.1145/2370816.2370869

Lugo, T., Lozano, S., Fernandez, J., Carretero, J., 2022. A survey of techniques for reducing interference in real-time applications on multicore platforms. IEEE Access 10, 21853-21882. https://doi.org/10.1109/ACCESS.2022.3151891

Lumpp, F., Patel, H.D., Bombieri, N., 2021. A framework for optimizing cpu-igpu communication on embedded platforms. 2021 58th ACM/ IEEE Design Automation Conference (DAC) 2021-December, 685-690. https://doi.org/10.1109/DAC18074.2021.9586304

Mancuso, R., Pellizzoni, R., Caccamo, M., Sha, L., Yun, H., 2015. Wcet(m) estimation in multi-core systems using single core equivalence. Euromicro Conference on Real-Time Systems 2015-August, 174-183. https://doi.org/10.1109/ECRTS.2015.23

Marchi, M.D., Lumpp, F., Martini, E., Boldo, M., Aldegheri, S., Bombieri, N., 2021. Efficient ros-compliant cpu-igpu communication on embedded platforms. Journal of Low Power Electronics and Applications 11. https://doi.org/10.3390/jlpea11020024

Milluzzi, A., George, A., 2017. Exploration of tmr fault masking with persistent threads on tegra gpu socs. IEEE Aerospace Conference , 1-7. https://doi.org/10.1109/AERO.2017.7943882

Nvidia, 2023. Cuda programming guide. URL: https://docs.nvidia.com. (Last accessed 2023).

Olmedo, I.S., Capodieci, N., Cavicchioli, R., 2018. A perspective on safety and real-time issues for gpu accelerated adas. IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society 1, 4071-4077. https://doi.org/10.1109/IECON.2018.8591540

Olmedo, I.S., Capodieci, N., Martinez, J.L., Marongiu, A., Bertogna, M., 2020. Dissecting the cuda scheduling hierarchy: A performance and predictability perspective. IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS 2020-April, 213-225. https://doi.org/10.1109/RTAS48715.2020.000-5

Otterness, N., Miller, V., Yang, M., Anderson, J.H., Smith, F.D., Wang, S., 2016. Gpu sharing for image processing in embedded real-time systems *. 12th Annual Workshop on Operating Systems Platforms for Embedded Real-Time Applications (OSPERT 2016) .

Otterness, N., Yang, M., Rust, S., Park, E., Anderson, J.H., Smith, F.D., Berg, A., Wang, S., 2017. An evaluation of the nvidia tx1 for supporting real-time computer-vision workloads. IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS) , 353-364. https://doi.org/10.1109/RTAS.2017.3

Park, J., Yeom, H., Son, Y., 2020. Page reusability-based cache partitioning for multi-core systems. IEEE Transactions on Computers 69, 812-818. https://doi.org/10.1109/TC.2020.2968066

Pellizzoni, R., Betti, E., Bak, S., Yao, G., Criswell, J., Caccamo, M., Kegley, R., 2011. A predictable execution model for cots-based embedded systems. 2011 17th IEEE Real-Time and Embedded Technology and Applications Symposium , 269-279. https://doi.org/10.1109/RTAS.2011.33

Perez-Cerrolaza, J., Abella, J., Kosmidis, L., Calderon, A.J., Cazorla, F., Flores, J.L., 2022. Gpu devices for safety-critical systems: A survey. ACM Computing Surveys 55. https://doi.org/10.1145/3549526

Rehm, F., Dasari, D., Hamann, A., Pressler, M., Ziegenbein, D., Seitter, J., Sañudo, I., Capodieci, N., Burgio, P., Bertogna, M., 2021. Performance modeling of heterogeneous hw platforms. Microprocessors and Microsystems 87. https://doi.org/10.1016/j.micpro.2021.104336

Roeder, J., Rouxel, B., Grelck, C., 2021. Scheduling dags of multi-version multi-phase tasks on heterogeneous real-time systems. 2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on- Chip (MCSoC) , 54-61. https://doi.org/10.1109/MCSoC51149.2021.00016

Saha, S.K., Xiang, Y., Kim, H., 2019. Stgm: Spatio-temporal gpu management for real-time tasks. 2019 IEEE 25th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA). https://doi.org/10.1109/RTCSA.2019.8864564

Schuh, M., Maiza, C., Goossens, J., Raymond, P., Dinechin, B.D.D., 2020. A study of predictable execution models implementation for industrial data-flow applications on a multi-core platform with shared banked memory. Real-Time Systems Symposium 2020-December, 283-295. https://doi.org/10.1109/RTSS49844.2020.00034

Serrano, M.A., Quiñones, E., 2018. Response-time analysis of dag tasks supporting heterogeneous computing. Design Automation & Test in Europe Conference & Exhibition (DATE) Part F137710. https://doi.org/10.1145/3195970.3196104

Singh, J., Olmedo, I.S., Capodieci, N., Marongiu, A., Caccamo, M., 2022. Reconciling qos and concurrency in nvidia gpus via warp-level scheduling. 2022 Design, Automation and Test in Europe Conference and Exhibition , 1275-1280. https://doi.org/10.23919/DATE54114.2022.9774761

Spliet, R., Mullins, R.D., 2022. Sim-d: A simd accelerator for hard real-time systems. IEEE Transactions on Computers 71, 851-865. https://doi.org/10.1109/TC.2021.3064290

Suzuki, N., Kim, H., Niz, D.D., Andersson, B., Wrage, L., Klein, M., Rajkumar, R., 2013. Coordinated bank and cache coloring for temporal protection of memory accesses. 16th IEEE International Conference on Computational Science and Engineering, CSE 2013 , 685-692. https://doi.org/10.1109/CSE.2013.106

Suzuki, Y., Kato, S., Yamada, H., Kono, K., 2016. Gpuvm: Gpu virtualization at the hypervisor. IEEE Transactions on Computers 65, 2752-2766. https://doi.org/10.1109/TC.2015.2506582

Wu, B., Chen, G., Li, D., Shen, X., Vetter, J., 2015. Enabling and exploiting flexible task assignment on gpu through sm-centric program transformations. International Conference on Supercomputing 2015-June, 119-130. https://doi.org/10.1145/2751205.2751213

Xu, Y., Wang, R., Li, T., Song, M., Gao, L., Luan, Z., Qian, D., 2016. Scheduling tasks with mixed timing constraints in gpu-powered realtime systems. International Conference on Supercomputing June-2016. https://doi.org/10.1145/2925426.2926265

Yandrofski, T., Chen, J., Otterness, N., Anderson, J.H., Smith, F.D., 2022. Making powerful enemies on nvidia gpus. Real-Time Systems Symposium , 383-395. https://doi.org/10.1109/RTSS55097.2022.00040

Yang, M., Otterness, N., Amert, T., Bakita, J., Anderson, J.H., Smith, F.D., 2018. Avoiding pitfalls when using nvidia gpus for real-time tasks in autonomous systems. Leibniz International Proceedings in Informatics, LIPIcs 106, 20:1-20:21. doi:10.4230/LIPIcs.ECRTS.2018.20

Yao, Y., Liu, S., Wu, S., Wang, J., Ni, J., Yang, G., Zhang, Y., 2022. Wamp2s: Workload-aware gpu performance model based pseudopreemptive real-time scheduling for the airborne embedded system. IEEE Transactions on Parallel and Distributed Systems 33, 2767-2780. https://doi.org/10.1109/TPDS.2021.3134269

Ye, Y., West, R., Cheng, Z., Li, Y., 2014. Coloris: A dynamic cache partitioning system using page coloring. Parallel Architectures and Compilation Techniques, PACT , 381-392. https://doi.org/10.1145/2628071.2628104

Yun, H., Ali, W., Gondi, S., Biswas, S., 2017. Bwlock: A dynamic memory access control framework for soft real-time applications on multicore platforms. IEEE Transactions on Computers 66, 1247-1252. https://doi.org/10.1109/TC.2016.2640961

Yun, H., Mancuso, R.,Wu, Z.P., Pellizzoni, R., 2014. Palloc: Dram bank-aware memory allocator for performance isolation on multicore platforms. IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS). https://doi.org/10.1109/RTAS.2014.6925999

Yun, H., Yao, G., Pellizzoni, R., Caccamo, M., Sha, L., 2013. Memguard: Memory bandwidth reservation system for efficient performance isolation in multi-core platforms. 2013 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS) , 55-66. https://doi.org/10.1109/RTAS.2013.6531079

Yurtsever, E., Lambert, J., Carballo, A., Takeda, K., 2020. A survey of autonomous driving: Common practices and emerging technologies. IEEE Access 8, 58443-58469. https://doi.org/10.1109/ACCESS.2020.2983149

Zhang, X., Dwarkadas, S., Shen, K., 2009. Towards practical page coloring-basedmulti-core cache management. 4th ACM European conference on Computer systems, Eurosys '09' , 89-102. https://doi.org/10.1145/1519065.1519076

Zhou, H., Bateni, S., Liu, C., 2018. S3dnn: Supervised streaming and scheduling for gpu-accelerated real-time dnn workloads. IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS) 66, 190-201. https://doi.org/10.1109/RTAS.2018.00028

Zou, A., Li, J., Gill, C.D., Zhang, X., 2023. Rtgpu: Real-time gpu scheduling of hard deadline parallel tasks with fine-grain utilization. IEEE Transactions on Parallel and Distributed Systems 34, 1450-1465. https://doi.org/10.1109/TPDS.2023.3235439

Descargas

Publicado

07-11-2023

Cómo citar

Gomez, I., Díaz de Cerio, U., Parra, J., Rivas, J. M. y Gutiérrez, J. J. (2023) «Uso de GPUs en aplicaciones de tiempo real: Una revisión de técnicas para el análisis y optimización de parámetros temporales», Revista Iberoamericana de Automática e Informática industrial, 21(1), pp. 1–16. doi: 10.4995/riai.2023.20321.

Número

Sección

Tutoriales

Datos de los fondos