UAV fully-actuated: modelo, control y comparación con configuración coplanaria
DOI:
https://doi.org/10.4995/riai.2023.19348Palabras clave:
UAVs, robótica aérea, robótica, modeladoResumen
Con el desarrollo de la robótica aérea han aparecido nuevas plataformas de multirotores de actuación completa (fully-actuated en inglés), las cuales tienen la capacidad de desplazarse sin inclinar la plataforma. Este artículo presenta una comparación en cuanto a capacidades de movimiento entre un hexarotor de rotores coplanarios, configuración estándar, y un hexarotor de rotores inclinados, configuración fully-actuated. Para ello, se presenta el diseño, modelo y control de ambas configuraciones. Tras el montaje de las plataformas, se comparan con diferentes trayectorias, mediante simulaciones y experimentos. Así mismo, se muestran capacidades exclusivas de la plataforma fully-actuated, como la capacidad de mantenerse en hover con un ángulo de inclinación. Finalmente, se presenta la aplicación de la plataforma fully-actuated para inspección visual de techos de puentes. Vídeo del artículo: https://youtu.be/d95Qvz5hba4
Descargas
Citas
Ahmed, H., La, H. M., Gucunski, N., 2020. Review of non-destructive civil infrastructure evaluation for bridges: State-of-the-art robotic platforms, sensors and algorithms. Sensors 20 (14). https://doi.org/10.3390/s20143954
Armengol, I., Suarez, A., Heredia, G., Ollero, A., 2021. Design, Integration and Testing of Compliant Gripper for the Installation of Helical Bird Diverters on Power Lines. In: 2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO). pp. 1-8. https://doi.org/10.1109/AIRPHARO52252.2021.9571044
Bodie, K., Brunner, M., Pantic, M., Walser, S., Pfndler, P., Angst, U., Siegwart, R., Nieto, J., jun 2019. An omnidirectional aerial manipulation platform for contact-based inspection. Robotics: Science and Systems Foundation. https://doi.org/10.15607/RSS.2019.XV.019
Brescianini, D., D'Andrea, R., 2016. Design, modeling and control of an omnidirectional aerial vehicle. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). pp. 3261-3266. https://doi.org/10.1109/ICRA.2016.7487497
Garofano-Soldado, A., Sanchez-Cuevas, P. J., Heredia, G., Ollero, A., 2022. Numerical-experimental evaluation and modelling of aerodynamic ground effect for small-scale tilted propellers at low reynolds numbers. Aerospace Science and Technology 126, 107625. https://doi.org/10.1016/j.ast.2022.107625
González Morgado, A., Álvarez-Cía, C., Heredia, G., Ollero Baturone, A., 2022. UAV fully-actuated: modelo, control y comparación con configuración coplanaria. In: XLIII Jornadas de Automática. Universidade da Coru˜na. Servizo de Publicacións, pp. 700-707. https://doi.org/10.17979/spudc.9788497498418.0700
Ivanovic, A., Markovic, L., Car, M., Duvnjak, I., Orsag, M., 2021. Towards autonomous bridge inspection: Sensor mounting using aerial manipulators. Applied Sciences 11 (18). https://doi.org/10.3390/app11188279
Kamel, M., Verling, S., Elkhatib, O., Sprecher, C.,Wulkop, P., Taylor, Z., Siegwart, R., Gilitschenski, I., 2018. The voliro omniorientational hexacopter: An agile and maneuverable tiltable-rotor aerial vehicle. IEEE Robotics & Automation Magazine 25 (4), 34-44. https://doi.org/10.1109/MRA.2018.2866758
Lanegger, C., Ruggia, M., Tognon, M., Ott, L., Siegwart, R., 2022-06. Aerial layouting: Design and control of a compliant and actuated end-effector for precise in-flight marking on ceilings. In: Proceedings of Robotics: Science and System XVIII. p. p073. https://doi.org/10.15607/RSS.2022.XVIII.073
Lassen, P., Fumagalli, M., 2022. Can your drone touch? exploring the boundaries of consumer-grade multirotors for physical interaction. In: 2022 International Conference on Robotics and Automation (ICRA). pp. 1-7. https://doi.org/10.1109/ICRA46639.2022.9812187
Ollero, A., Heredia, G., Franchi, A., Antonelli, G., Kondak, K., Sanfeliu, A., Viguria, A., Martinez-de Dios, J. R., Pierri, F., Cortes, J., Santamaria-Navarro, A., Trujillo Soto, M. A., Balachandran, R., Andrade-Cetto, J., Rodriguez, A., 2018. The AEROARMS Project: Aerial Robots with Advanced Manipulation Capabilities for Inspection and Maintenance. IEEE Robotics Automation Magazine 25 (4), 12-23.
https://doi.org/10.1109/MRA.2018.2852789
Ollero, A., Tognon, M., Suarez, A., Lee, D., Franchi, A., 2022. Past, present, and future of aerial robotic manipulators. IEEE Transactions on Robotics 38 (1), 626-645. https://doi.org/10.1109/TRO.2021.3084395
Rajappa, S., Ryll, M., B¨ulthoff, H. H., Franchi, A., 2015. Modeling, control and design optimization for a fully-actuated hexarotor aerial vehicle with tilted propellers. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). pp. 4006-4013. https://doi.org/10.1109/ICRA.2015.7139759
Ryll, M., Bicego, D., Franchi, A., 2016. Modeling and control of fast-hex: A fully-actuated by synchronized-tilting hexarotor. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 1689- 1694. https://doi.org/10.1109/IROS.2016.7759271
Ryll, M., B¨ulthoff, H. H., Giordano, P. R., 2015. A novel overactuated quadrotor unmanned aerial vehicle: Modeling, control, and experimental validation. IEEE Transactions on Control Systems Technology 23 (2), 540-556. https://doi.org/10.1109/TCST.2014.2330999
Ryll, M., Muscio, G., Pierri, F., Cataldi, E., Antonelli, G., Caccavale, F., Franchi, A., 2017. 6d physical interaction with a fully actuated aerial robot. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). pp. 5190-5195. https://doi.org/10.1109/ICRA.2017.7989608
Sanchez-Cuevas, P. J., Gonzalez-Morgado, A., Cortes, N., Gayango, D. B., Jimenez-Cano, A. E., Ollero, A., Heredia, G., 2020. Fully-actuated aerial manipulator for infrastructure contact inspection: Design, modeling, localization, and control. Sensors 20 (17). URL: https://www.mdpi.com/1424-8220/20/17/4708 https://doi.org/10.3390/s20174708
Suarez, A., Romero, H., Salmoral, R., Acosta, J. A., Zambrano, J., Ollero, A., 2021. Experimental Evaluation of Aerial Manipulation Robot for the Installation of Clip Type Bird Diverters: Outdoor Flight Tests. In: 2021 Aerial Robotic Systems Physically Interacting with the environment (AIRPHARO). pp. 1-7. https://doi.org/10.1109/AIRPHARO52252.2021.9571029
Trujillo, M. A., Martínez-de Dios, J. R., Mart'ın, C., Viguria, A., Ollero, A., 2019. Novel Aerial Manipulator for Accurate and Robust Industrial NDT Contact Inspection: A New Tool for the Oil and Gas Inspection Industry. Sensors 19 (6). https://doi.org/10.3390/s19061305
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Antonio González Morgado, Carlos Álvarez Cía, Guillermo Heredia, Aníbal Ollero
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)
Datos de los fondos
-
Ministerio de Economía y Competitividad
Números de la subvención ROBMIND (PDC2021-121524-I00) y HAERA (PID2020- 119027RB-I00) -
European Commission
Números de la subvención AERIAL-CORE (H2020-2019-871479) y AEROTRAIN (MSCA-ITN-2020- 953454)