UAV fully-actuated: modelo, control y comparación con configuración coplanaria

Autores/as

  • Antonio González-Morgado Universidad de Sevilla
  • Carlos Álvarez-Cía Universidad de Sevilla
  • Guillermo Heredia Universidad de Sevilla
  • Aníbal Ollero Universidad de Sevilla

DOI:

https://doi.org/10.4995/riai.2023.19348

Palabras clave:

UAVs, robótica aérea, robótica, modelado

Resumen

Con el desarrollo de la robótica aérea han aparecido nuevas plataformas de multirotores de actuación completa (fully-actuated en inglés), las cuales tienen la capacidad de desplazarse sin inclinar la plataforma. Este artículo presenta una comparación en cuanto a capacidades de movimiento entre un hexarotor de rotores coplanarios, configuración estándar, y un hexarotor de rotores inclinados, configuración fully-actuated. Para ello, se presenta el diseño, modelo y control de ambas configuraciones. Tras el montaje de las plataformas, se comparan con diferentes trayectorias, mediante simulaciones y experimentos. Así mismo, se muestran capacidades exclusivas de la plataforma fully-actuated, como la capacidad de mantenerse en hover con un ángulo de inclinación. Finalmente, se presenta la aplicación de la plataforma fully-actuated para inspección visual de techos de puentes. Vídeo del artículo:  https://youtu.be/d95Qvz5hba4

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Antonio González-Morgado, Universidad de Sevilla

Grupo de Robótica, Visión y Control

Carlos Álvarez-Cía, Universidad de Sevilla

Grupo de Robótica, Visión y Control

Guillermo Heredia, Universidad de Sevilla

Grupo de Robótica, Visión y Control

Aníbal Ollero, Universidad de Sevilla

Grupo de Robótica, Visión y Control

Citas

Ahmed, H., La, H. M., Gucunski, N., 2020. Review of non-destructive civil infrastructure evaluation for bridges: State-of-the-art robotic platforms, sensors and algorithms. Sensors 20 (14). https://doi.org/10.3390/s20143954

Armengol, I., Suarez, A., Heredia, G., Ollero, A., 2021. Design, Integration and Testing of Compliant Gripper for the Installation of Helical Bird Diverters on Power Lines. In: 2021 Aerial Robotic Systems Physically Interacting with the Environment (AIRPHARO). pp. 1-8. https://doi.org/10.1109/AIRPHARO52252.2021.9571044

Bodie, K., Brunner, M., Pantic, M., Walser, S., Pfndler, P., Angst, U., Siegwart, R., Nieto, J., jun 2019. An omnidirectional aerial manipulation platform for contact-based inspection. Robotics: Science and Systems Foundation. https://doi.org/10.15607/RSS.2019.XV.019

Brescianini, D., D'Andrea, R., 2016. Design, modeling and control of an omnidirectional aerial vehicle. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). pp. 3261-3266. https://doi.org/10.1109/ICRA.2016.7487497

Garofano-Soldado, A., Sanchez-Cuevas, P. J., Heredia, G., Ollero, A., 2022. Numerical-experimental evaluation and modelling of aerodynamic ground effect for small-scale tilted propellers at low reynolds numbers. Aerospace Science and Technology 126, 107625. https://doi.org/10.1016/j.ast.2022.107625

González Morgado, A., Álvarez-Cía, C., Heredia, G., Ollero Baturone, A., 2022. UAV fully-actuated: modelo, control y comparación con configuración coplanaria. In: XLIII Jornadas de Automática. Universidade da Coru˜na. Servizo de Publicacións, pp. 700-707. https://doi.org/10.17979/spudc.9788497498418.0700

Ivanovic, A., Markovic, L., Car, M., Duvnjak, I., Orsag, M., 2021. Towards autonomous bridge inspection: Sensor mounting using aerial manipulators. Applied Sciences 11 (18). https://doi.org/10.3390/app11188279

Kamel, M., Verling, S., Elkhatib, O., Sprecher, C.,Wulkop, P., Taylor, Z., Siegwart, R., Gilitschenski, I., 2018. The voliro omniorientational hexacopter: An agile and maneuverable tiltable-rotor aerial vehicle. IEEE Robotics & Automation Magazine 25 (4), 34-44. https://doi.org/10.1109/MRA.2018.2866758

Lanegger, C., Ruggia, M., Tognon, M., Ott, L., Siegwart, R., 2022-06. Aerial layouting: Design and control of a compliant and actuated end-effector for precise in-flight marking on ceilings. In: Proceedings of Robotics: Science and System XVIII. p. p073. https://doi.org/10.15607/RSS.2022.XVIII.073

Lassen, P., Fumagalli, M., 2022. Can your drone touch? exploring the boundaries of consumer-grade multirotors for physical interaction. In: 2022 International Conference on Robotics and Automation (ICRA). pp. 1-7. https://doi.org/10.1109/ICRA46639.2022.9812187

Ollero, A., Heredia, G., Franchi, A., Antonelli, G., Kondak, K., Sanfeliu, A., Viguria, A., Martinez-de Dios, J. R., Pierri, F., Cortes, J., Santamaria-Navarro, A., Trujillo Soto, M. A., Balachandran, R., Andrade-Cetto, J., Rodriguez, A., 2018. The AEROARMS Project: Aerial Robots with Advanced Manipulation Capabilities for Inspection and Maintenance. IEEE Robotics Automation Magazine 25 (4), 12-23.

https://doi.org/10.1109/MRA.2018.2852789

Ollero, A., Tognon, M., Suarez, A., Lee, D., Franchi, A., 2022. Past, present, and future of aerial robotic manipulators. IEEE Transactions on Robotics 38 (1), 626-645. https://doi.org/10.1109/TRO.2021.3084395

Rajappa, S., Ryll, M., B¨ulthoff, H. H., Franchi, A., 2015. Modeling, control and design optimization for a fully-actuated hexarotor aerial vehicle with tilted propellers. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). pp. 4006-4013. https://doi.org/10.1109/ICRA.2015.7139759

Ryll, M., Bicego, D., Franchi, A., 2016. Modeling and control of fast-hex: A fully-actuated by synchronized-tilting hexarotor. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 1689- 1694. https://doi.org/10.1109/IROS.2016.7759271

Ryll, M., B¨ulthoff, H. H., Giordano, P. R., 2015. A novel overactuated quadrotor unmanned aerial vehicle: Modeling, control, and experimental validation. IEEE Transactions on Control Systems Technology 23 (2), 540-556. https://doi.org/10.1109/TCST.2014.2330999

Ryll, M., Muscio, G., Pierri, F., Cataldi, E., Antonelli, G., Caccavale, F., Franchi, A., 2017. 6d physical interaction with a fully actuated aerial robot. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). pp. 5190-5195. https://doi.org/10.1109/ICRA.2017.7989608

Sanchez-Cuevas, P. J., Gonzalez-Morgado, A., Cortes, N., Gayango, D. B., Jimenez-Cano, A. E., Ollero, A., Heredia, G., 2020. Fully-actuated aerial manipulator for infrastructure contact inspection: Design, modeling, localization, and control. Sensors 20 (17). URL: https://www.mdpi.com/1424-8220/20/17/4708 https://doi.org/10.3390/s20174708

Suarez, A., Romero, H., Salmoral, R., Acosta, J. A., Zambrano, J., Ollero, A., 2021. Experimental Evaluation of Aerial Manipulation Robot for the Installation of Clip Type Bird Diverters: Outdoor Flight Tests. In: 2021 Aerial Robotic Systems Physically Interacting with the environment (AIRPHARO). pp. 1-7. https://doi.org/10.1109/AIRPHARO52252.2021.9571029

Trujillo, M. A., Martínez-de Dios, J. R., Mart'ın, C., Viguria, A., Ollero, A., 2019. Novel Aerial Manipulator for Accurate and Robust Industrial NDT Contact Inspection: A New Tool for the Oil and Gas Inspection Industry. Sensors 19 (6). https://doi.org/10.3390/s19061305

Descargas

Publicado

28-04-2023

Cómo citar

González-Morgado, A., Álvarez-Cía, C., Heredia Benot, G. y Ollero Baturone, A. . (2023) «UAV fully-actuated: modelo, control y comparación con configuración coplanaria», Revista Iberoamericana de Automática e Informática industrial, 20(4), pp. 401–411. doi: 10.4995/riai.2023.19348.

Número

Sección

Artículos

Datos de los fondos