Implementación del control adaptable por modelo de referencia en un sistema de deshidratación

Autores/as

DOI:

https://doi.org/10.4995/riai.2023.19172

Palabras clave:

Control Adaptable, deshidratador, método MRAC, Señal de referencia, sistema térmico, teoría de Lyapunov, índice de desempeño

Resumen

En este artículo se propone el uso del Control Adaptable por Modelo de Referencia (MRAC) como técnica para regular un sistema con retardo en la entrada, como caso de estudio se considera un sistema térmico representado por un deshidratador de cabina. Se realiza el análisis del sistema seleccionado para determinar las ecuaciones que describen su comportamiento, y se diseña una señal de referencia, esencial para el correcto funcionamiento del algoritmo de control. Se realiza la identificación de los parámetros del sistema térmico y la sintonización de la ganancia de adaptación. Para evaluar la estabilidad del sistema y diseñar el control se utiliza la teoría de Lyapunov. El desempeño del control propuesto se compara con otros métodos empleando el índice de desempeño (norma L2).

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Pablo Sánchez-Sánchez, Benemérita Universidad Autónoma de Puebla

Facultad de Ciencias de la Electrónica, Departamento de Robótica y Control

José Guillermo Cebada–Reyes, Chapingo Autonomous University

Departamento de Mecatrónica Agrícola

Aideé Montiel–Martínez, Benemérita Universidad Autónoma de Puebla

Facultad de Ciencias de la Electrónica, Departamento de Robótica y Control

José Fernando Reyes–Cortés, Benemérita Universidad Autónoma de Puebla

Facultad de Ciencias de la Electrónica, Departamento de Robótica y Control

Citas

Aguilar-Ibanez, C., Saldivar, B., Jimenez Lizarraga, M., Garcia-Canseco, E., Garrido, R. (2021). Parametric uncertain second-order linear systemoutput-adaptive stabilization: An integral and MRCA based approach.Eu-ropean Journal of Control, Volume 57, Pages 76-81. ISSN 0947-3580. https://doi.org/10.1016/j.ejcon.2020.04.002

Arslan, D., 2010. Evaluation of drying methods on the quality of dill (Anethum graveolens L.) and parsley (Petroselinum crispum L.) leaves. Journal of Food Engineering, 96(4), 607-613. https://doi.org/10.1016/j.jfoodeng.2009.08.012

Aruna, R. and Kumar, M. Senthil, 2011. Adaptive control for interactive thermal process. 2011 International Conference on Emerging Trends in Electrical and Computer Technology. 291-296. https://doi.org/10.1109/ICETECT.2011.5760131

Cengel, Y. A. 2011. Heat and Mass Transfer: Fundamentals and Applications. McGraw-Hill Education. ISBN-13: 978-0073398181

Dincer, I. (2002). Thermal energy storage systems as a key technology in energyconservation. Energy Research, 26(7), 567-588. https://doi.org/10.1002/er.805

Doymaz, I., 2006. Thin-layer drying behaviour of mint leaves. Journal of Food Engineering, 74(3), 370-375. DOI: https://doi.org/10.1016/j.jfoodeng.2005.03.009

Dresselhaus, M. S., Chen, G., and Ren, Z., 2007. New directions for low-dimensional thermoelectric materials. Advanced Materials, 19(4), 1043-1053. https://doi.org/10.1002/adma.200600527

Duvanov, E. S., Kudinov, Y. I., Pashchenko, F. F., Ponomarev, A. A., 2020. Analysis and Synthesis of the Modified MRAC-MIT System and the MRAC-Lyapunov System. In: 2020 2nd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA). Lipetsk, Russia, pp. 521-526. https://doi.org/10.1109/SUMMA50634.2020.9280614

Faghri, A., Zhang, Y., y Howell, J. R., 2010. Advanced Heat and Mass Transfer. Global Digital Press.

Garcia, J. E., Ramirez, B. C., Arellano, G. R. and Zañudo, J., 2012. Conocimiento y uso de las plantas Medicinales en la zona metropolitana de Guada-lajara. Rev. Desacatos, 29-44. ISSN 2448-5144 https://doi.org/10.29340/39.238

García Navarrete, F., 2014. Evaluación de los procesos de secado sobre la calidad de la Stevia (Stevia Rebaudiana) y la Hierbabuena (Mentha Spicata sp). Masters Thesis, Dept. civil and agricultural Engineering. Nacional Univ., Bogota, Colombia.

Giddings, S. B. (2016). Hawking radiation, the Stefan-Boltzmann law, and uni-tarization. Physics Letters B, 754, 39-42. https://doi.org/10.1016/j.physletb.2015.12.076

KC, Krishna Bahadur and Haque, Iftekharul and Legwegoh, Alexander F. and Fraser, Evan D. G., 2016. Strategies to Reduce Food Loss in the Global South. Sustainability 8 (7), 595. https://doi.org/10.3390/su8070595

Kelly, R., and Santib'a˜nez, V., 2003. Control de Movimiento de Robots Manipuladores. Pearson Prentice-Hall, Madrid, España.

Kittel, C., 2005. Introduction to Solid State Physics. John Wiley and Sons.

Kreith, F., and Bohn, M. S. (2019). Principles of heat transfer. Cengage Learning. SBN10: 1-305-38710-4, ISBN13: 978-1-305-38710-2

Landau, Y. D. (1979). Adaptive Control. Marcel Dekker, New York, USA. ISBN-10: 0824765486, ISBN-13: 978-0824765484

Mahan, G. D., and Sofo, J. O., 1996. The best thermoelectric. Proceedings of the National Academy of Sciences, 93(15), 7436-7439. https://doi.org/10.1073/pnas.93.15.7436

Mahendran, G., Verma, S. K., Rahman, L.-U., 2021. The traditional uses, phytochemistry and pharmacology of spearmint (Mentha spicata L.): A review. Journal of Ethnopharmacology 278, 114266. https://doi.org/10.1016/j.jep.2021.114266

Maisnam, D., Rasane, P., Dey, A., Kaur, S. and Sarma, C., 2017. Recent advances in conventional drying of foods: a review. Journal of Food Technology and Preservation, 1, 24-34.

Martínez, M., 1996. Las plantas Medicinales de Mexico. Ed. Botas, Texas, USA.

Michailidis, P. and Krokida, M.K., 2014. Drying and Dehydration Processes in Food Preservation and Processing. Conventional and advanced food processing technologies. 1-32. https://doi.org/10.1002/9781118406281.ch1

Singh, G., Zaheer-uddin, M., Patel, R.V., 2000. Adaptive control of multivariable thermal processes in HVAC systems. Energy Conversion and Management 41(15), 1671-1685. https://doi.org/10.1016/S0196-8904(99)00182-X

Singh, A.B., Manju, P., Rukkumani, V., Srinivasan, K. (2022). Comparative Analysis of MRA Cand IMC Adaptive Control Modes for an Industrial Dryer. In: EdwinGeo, V., Aloui, F. (eds) Energy and Exergy for Sustainable and Clean Environment, Volume 1.Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-8278-0_31

Slotine, J. J. E. and Li, W., 1988. On the adaptive control of robots. International Journal of Control, 48(6), 1305-1328. DOI: https://doi.org/10.1177/027836498700600303

Slotine, J. J. E., Li, W. (1991). Applied Nonlinear Control. Prentice Hall, Englewood Cliffs, NJ, Vol. 199, No. 1, pp. 705

Van Amerongen, J. (1980). Model Reference adaptive Control applied to steering of ships. In: Unbehauen, H. (Eds.) Methods and Applications in Adaptive Control. Springer Berlin Heidelberg, Berlin, Heidelberg, pp.199-208. https://doi.org/10.1007/BFb0003265

Van den Bosch, P. P. J., Jongkind, W. and van Swieten, A. C. M. (1986). Adaptive attitude control for large-angle slew manoeuvres. Autom., 22, 209-215. https://doi.org/10.1016/0005-1098(86)90082-8

Van den Bosch, P. and Tjahjadi, P. (1984). Model updating improves MRAC performance. IEEE Transactions on Automatic Control, 29(12), 1106-1108. https://doi.org/10.1109/TAC.1984.1103442

Van den Bosch, P. P. J., Jongkind, W. (1980). Model reference adaptive satellite attitude control. In: Methods and Applications in Adaptive Control. Springer, Berlin, Heidelberg, pp. 209-218. https://doi.org/10.1007/BFb0003266

World Bank Group Mexico, 2018. A conceptual framework for a national strategy on food loss and waste in Mexico. World Bank Group Mexico.

Zhao, B. (2022). Integrity of Newton's cooling law based on thermal convec-tion theory of heat transfer and entropy transfer. Scientific Reports, 12(1),16292. https://doi.org/10.1038/s41598-022-18961-8

Zhao, X.; Guo, G. Model Reference Adaptive Control of Vehicle Slip Ratio Ba-sed on Speed Tracking. Appl. Sci. 2020, 10, 3459. https://doi.org/10.3390/app10103459

Descargas

Publicado

28-08-2023

Cómo citar

Sánchez-Sánchez, P., Cebada–Reyes, J. G., Montiel–Martínez, A. y Reyes–Cortés, J. F. (2023) «Implementación del control adaptable por modelo de referencia en un sistema de deshidratación», Revista Iberoamericana de Automática e Informática industrial, 21(1), pp. 39–51. doi: 10.4995/riai.2023.19172.

Número

Sección

Artículos