Entorno de trabajo cíber-físico para cirugía laparoscópica
DOI:
https://doi.org/10.4995/riai.2023.18753Palabras clave:
Cirugía laparoscópica, Simulador quirúrgico, Sistema cíber-físico, Robot manipulador redundante, Modelo Cinemático Inverso, Adquisición de vídeoResumen
Este trabajo desarrolla la implantación de un entorno de trabajo cíber-físico para cirugía laparoscópica que permite utilizar un simulador quirúrgico con un brazo robótico, para así facilitar el aprendizaje y la investigación con este tipo de sistemas. Se propone y valida una configuración para cada uno de los elementos del quirófano que permite cumplir todas las restricciones funcionales. También se implanta un Modelo Cinemático Inverso para el brazo robótico redundante que devuelve la solución más adecuada que asegura el cumplimiento de estas restricciones. El entorno de trabajo se ha implementado haciendo uso de ROS y MATLAB, realizando una serie de pruebas a fin de validar el desarrollo de aplicaciones utilizando este framework.
Descargas
Citas
Ae, G. P. Y. S., Ho, P., Albert, A. E., Ting, C. W., Jensen, A. E., Poon, T. C., Stephen, A. E., Cheng, W. K., Raymond, A. E., Tsang, C. C., 2009. Workrelated musculoskeletal symptoms in surgeons. https://doi.org/10.1007/s10926-009-9176-1
Aitchison, L. P., Cathy, Cui, K., Arnold, A., Nesbitt-Hawe , E., Abbott, J., 2016. The ergonomics of laparoscopic surgery: a quantitative study of the time and motion of laparoscopic surgeons in live surgical environments. https://doi.org/10.1007/s00464-016-4855-4
Barrett-Technology, 2011. Barrett wam datasheet. Accessed: 2022-04-18. URL: https://web.barrett.com/files/WAMDataSheet 02.2011.pdf
Barrett-Technology, 5 2021. barrett-ros-pkg repository. Accessed: 2022-02-23. URL: https://git.barrett.com/software/barrett-ros-pkg
Barrett-Technology, 2022. libbarrett respository. Accessed: 2022-02-23. URL: https://git.barrett.com/software/libbarrett
Beuss, F., Schmatz, F., Stepputat, M., Nokodian, F., Fluegge, W., Frerich, B., 2021. Cobots in maxillofacial surgery - challenges for workplace design and the human-machine-interface. Procedia CIRP 100, 488-493. https://doi.org/10.1016/j.procir.2021.05.108
Capolei, M. C., Wu, H., Andersen, N. A., Ravn, O., 2017. Positioning the Laparoscopic Camera with Industrial Robot Arm. https://doi.org/10.1109/ICCAR.2017.7942675
García-Morales, I., 2006. Control operacional de un robot asistente para cirugía laparoscópica. Phd thesis, Universidad de Málaga.
Geoghegan, R., Song, J., Singh, A., Le, T., Abiri, A., Mendelsohn, A. H., 7 2019. Development of a transoral robotic surgery training platform*. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 5851-5854. https://doi.org/10.1109/EMBC.2019.8856971
Hatzfeld, C., Neupert, C., Matich, S., Braun, M., Bilz, J., Johannink, J., Miller, J., Pott, P. P., Schlaak, H. F., Kupnik, M.,Werthschutzky, R., Kirschniak, A., 7 2017. A teleoperated platform for transanal single-port surgery: Ergonomics and workspace aspects. 2017 IEEE World Haptics Conference, WHC 2017, 1-6. https://doi.org/10.1109/WHC.2017.7989847
Hu, J. C., Gu, X., Lipsitz, S. R., Barry, M. J., D'amico, A. V., Weinberg, A. C., Keating, N. L., 2009. Comparative effectiveness of minimally invasive vs open radical prostatectomy. JAMA 302, 1557-1564. URL: https://jamanetwork.com/ https://doi.org/10.1001/jama.2009.1451
iData Research, 2018. Robotic surgery statistics show movement towards more minimally invasive procedures - idata research. Accessed: 2022-09-28. URL: https://idataresearch.com/robotic-surgery-statistics-show-movement-towards-more-minimally-invasive-procedures/
Jaffray, B., 2005. Minimally invasive surgery. Arch Dis Child 90, 537-542. URL: www.archdischild.com https://doi.org/10.1136/adc.2004.062760
Kundrat, D., Dagnino, G., Kwok, T. M., Abdelaziz, M. E., Chi,W., Nguyen, A., Riga, C., Yang, G. Z., 10 2021. An mr-safe endovascular robotic platform: Design, control, and ex-vivo evaluation. IEEE Transactions on Biomedical Engineering 68, 3110-3121. https://doi.org/10.1109/TBME.2021.3065146
Leporini, A., Oleari, E., Landolfo, C., Sanna, A., Larcher, A., Gandaglia, G., Fossati, N., Muttin, F., Capitanio, U., Montorsi, F., Salonia, A., Minelli, M., Member, G. S., Ferraguti, F., Secchi, C., Member, S., Farsoni, S., Sozzi, A., Bonf'e, M., Sayols, N., Hernansanz, A., Casals, A., Hertle, S., Cuzzolin, F., Dennison, A., Melzer, A., Kronreif, G., Siracusano, S., Falezza, F., Setti, F., Muradore, R., Leporini, A. L. A., Bonf'e, M., 2020. Technical and functional validation of a teleoperated multirobots platform for minimally invasive surgery. IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS 2. URL: https://transenterix.com/ https://doi.org/10.1109/TMRB.2020.2990286
MathWorks, 2022. Speech command recognition using deep learning. Accessed: 2022-11-01. URL: https://www.mathworks.com/help/audio/ug/speech-command-recognition-using-deep-learning.html
Panait, L., Akkary, E., Bell, R. L., Roberts, K. E., Dudrick, S. J., Duffy, A. J., 10 2009. The role of haptic feedback in laparoscopic simulation training. Journal of Surgical Research 156, 312-316. https://doi.org/10.1016/j.jss.2009.04.018
Pandya, A., Reisner, L. A., King, B., Lucas, N., Composto, A., Klein, M., Ellis, R. D., 2014. A review of camera viewpoint automation in robotic and laparoscopic surgery. Robotics 3, 310-329. URL: www.mdpi.com/journal/robotics https://doi.org/10.3390/robotics3030310
Pérez-Duarte, F. J., Sánchez-Margallo, F. M., Martín-Portugués, I. D.-G., ángel Sánchez-Hurtado, M., Lucas-Hernández, M., Gargallo, J. U., 5 2012. Ergonomía en cirugía laparoscópica y su importancia en la formación quirúrgica. Cirugia Española 90, 284-291. https://doi.org/10.1016/j.ciresp.2011.04.021
Russo, S., Dario, P., Menciassi, A., 2 2015. A novel robotic platform for laserassisted transurethral surgery of the prostate. IEEE Transactions on Biomedical Engineering 62, 489-500. https://doi.org/10.1109/TBME.2014.2358711
SARAS-Project, 4 2020. Multirobots-surgery platform conceptual ros* architecture - saras project. Accessed: 2022-09-28. URL: https://saras-project.eu/?p=1442#more-1442
Setti, F., Oleari, E., Leporini, A., Trojaniello, D., Sanna, A., Capitanio, U., Montorsi, F., Salonia, A., Muradore, R., 5 2019. A multirobots teleoperated platform for artificial intelligence training data collection in minimally invasive surgery. 2019 International Symposium on Medical Robotics, ISMR 2019. https://doi.org/10.1109/ISMR.2019.8710209
Singh, G. K., Claassens, J., 2010. An analytical solution for the inverse kinematics of a redundant 7dof manipulator with link offsets. The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. https://doi.org/10.1109/IROS.2010.5649095
Tiwari, M. M., Reynoso, J. F., High, R., Tsang, A. W., Oleynikov, D., 2011. Safety, efficacy, and cost-effectiveness of common laparoscopic procedures. https://doi.org/10.1007/s00464-010-1328-z
Varas, N., 2019. usb cam - ros wiki. Accessed: 2022-03-05. URL: http://wiki.ros.org/usbcam
Zendejas, B., Brydges, R., Hamstra, S. J., Cook, D. A., 4 2013. State of the evidence on simulation-based training for laparoscopic surgery: A systematic review. Annals of Surgery 257, 586-593. https://doi.org/10.1097/SLA.0b013e318288c40b
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Juan María Herrera López, Álvaro Galán Cuenca, Isabel García Morales, Marcos Rollón Rivas, Irene Rivas Blanco, Víctor Fernando Muñoz Martínez
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)
Datos de los fondos
-
Universidad de Málaga
Números de la subvención PY20-00738