ROMERIN: Organismo robótico escalador basado en patas modulares con ventosas activas
DOI:
https://doi.org/10.4995/riai.2022.18749Palabras clave:
Cinemática de robots para control, Modelado de robots y sistemas multi-robot para control, Robótica de campo, marina y submarina y aéreaResumen
Este artículo presenta el robot ROMERIN, un organismo robótico modularmente compuesto por patas que utilizan ventosas activas como sistema de adhesión al entorno, y cuyo objetivo es la inspección de infraestructuras mediante la escalada. Se detalla la estructura física del organismo robótico, incluyendo una explicación de los módulos y del cuerpo. También se incluye una descripción de la arquitectura de control basada en el control en par de la posición del cuerpo del organismo, cuyo número de patas y disposición de las mismas es variable de forma que el sistema es versátil para su utilización en diferentes entornos y aplicaciones. La arquitectura de control que se ha diseñado sirve de base para el control de robots escaladores con patas de cualquier número de patas. Se ha comprobado su funcionamiento en el robot físico ROMERIN y en su gemelo digital (“digital twin”), registrando y mostrando dichos resultados. Además, se ha comprobado el funcionamiento de la arquitectura de control para diferentes configuraciones del organismo, demostrando su modularidad y versatilidad para diferentes aplicaciones.
Descargas
Citas
Alkalla, M. G., Fanni, M. A., Mohamed, A. M., Hashimoto, S., mar 2017. Teleoperated propeller-type climbing robot for inspection of petrochemical vessels. Industrial Robot: An International Journal 44 (2), 166-177. https://doi.org/10.1108/IR-07-2016-0182
Andrikopoulos, G., Papadimitriou, A., Brusell, A., Nikolakopoulos, G., nov 2019. On model-based adhesion control of a vortex climbing robot. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. https://doi.org/10.1109/IROS40897.2019.8968069
Baghani, A., Ahmadabadi, M., Harati, A., 2005. Kinematics modeling of a wheel-based pole climbing robot (UT-PCR). In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation. IEEE. URL: https://doi.org/10.1109%2Frobot.2005.1570423
Bandyopadhyay, T., Steindl, R., Talbot, F., Kottege, N., Dungavell, R., Wood, B., Barker, J., Hoehn, K., Elfes, A., oct 2018. Magneto: A versatile multilimbed inspection robot. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. https://doi.org/10.1109/IROS.2018.8593891
Bellicoso, C. D., Gehring, C., Hwangbo, J., Fankhauser, P., Hutter, M., 2016. Perception-less terrain adaptation through whole body control and hierarchical optimization. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids). IEEE, pp. 558-564. URL: https://doi.org/10.1109%2Fhumanoids.2016.7803330
Bisht, R. S., Pathak, P. M., Panigrahi, S. K., 2022. Design and development of a glass fac¸ade cleaning robot. Mechanism and Machine Theory 168, 104585. https://doi.org/10.1016/j.mechmachtheory.2021.104585
Buettner, T., Heppner, G., Roennau, A., Dillmann, R., jul 2019. Nimble limbs - intelligent attachable legs to create walking robots from variously shaped objects. In: 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM). IEEE. https://doi.org/10.1109/AIM.2019.8868845
Buettner, T., Wilke, D., Roennau, A., Heppner, G., Dillmann, R., sep 2018. A scalable, modular leg design for multi-legged stair climbing robots. In: Robotics Transforming the Future. CLAWAR Association Ltd. URL: https://doi.org/10.13180%2Fclawar.2018.10-12.09.34
B¨uschges, A., Schmidt, J., dec 2015. Neuronal control of walking: studies on insects. e-Neuroforum 21 (4), 105-112. https://doi.org/10.1515/s13295-015-0017-8
Desai, R., Li, B., Yuan, Y., Coros, S., sep 2018. Interactive co-design of form and function for legged robots using the adjoint method. In: Robotics Transforming the Future. CLAWAR Association Ltd. URL: https://doi.org/10.13180%2Fclawar.2018.10-12.09.26
Eto, H., Asada, H. H., may 2020. Development of a wheeled wall-climbing robot with a shape-adaptive magnetic adhesion mechanism. In: 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE. https://doi.org/10.1109/ICRA40945.2020.9196919
Fankhauser, P., Bellicoso, C. D., Gehring, C., Dube, R., Gawel, A., Hutter, M., nov 2016. Free gait - an architecture for the versatile control of legged robots. In: 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids). IEEE. https://doi.org/10.1109/HUMANOIDS.2016.7803401
Ge, D., Ren, C., Matsuno, T., Ma, S., oct 2016. Guide rail design for a passive suction cup based wall-climbing robot. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. https://doi.org/10.1109/IROS.2016.7759850
Gilpin, K., Rus, D., sep 2010. Modular robot systems. IEEE Robotics & Automation Magazine 17 (3), 38-55. https://doi.org/10.1109/MRA.2010.937859
Grieco, J., Prieto, M., Armada, M., de Santos, P. G., 1998. A six-legged climbing robot for high payloads. In: Proceedings of the 1998 IEEE International Conference on Control Applications (Cat. No.98CH36104). IEEE. URL: https://doi.org/10.1109%2Fcca.1998.728488
Hernando, M., Alonso, M., Prados, C., Gambao, E., 2021a. Behaviorbased control architecture for legged-and-climber robots. Applied Sciences 11 (20). https://doi.org/10.3390/app11209547
Hernando, M., Brunete, A., Gambao, E., 2019. ROMERIN: A modular climber robot for infrastructure inspection. IFAC-PapersOnLine 52 (15), 424-429. https://doi.org/10.1016/j.ifacol.2019.11.712
Hernando, M., Gambao, E., Prados, C., Brito, D., Brunete, A., 2022. ROMERIN: A new concept of a modular autonomous climbing robot. International Journal of Advanced Robotic Systems 19 (5), 17298806221123416. https://doi.org/10.1177/17298806221123416
Hernando, M., G'omez, V., Brunete, A., Gambao, E., feb 2021b. CFD modelling and optimization procedure of an adhesive system for a modular climbing robot. Sensors 21 (4), 1117. https://doi.org/10.3390/s21041117
Herzog, A., Rotella, N., Mason, S., Grimminger, F., Schaal, S., Righetti, L., 2016. Momentum control with hierarchical inverse dynamics on a torquecontrolled humanoid. Autonomous Robots 40 (3), 473-491. https://doi.org/10.1007/s10514-015-9476-6
Humza, R., Scholz, O., Mokhtar, M., Timmis, J., Tyrrell, A., nov 2009. Towards energy homeostasis in an autonomous self-reconfigurable modular robotic organism. In: 2009 Computation World: Future Computing, Service Computation, Cognitive, Adaptive, Content, Patterns. IEEE. https://doi.org/10.1109/ComputationWorld.2009.83
Hutter, M., Gehring, C., Bloesch, M., Hoepflinger, M. A., Remy, C. D., Siegwart, R., jul 2012. Starleth: A compliant quadrupedal robot for fast, efficient, and versatile locomotion. In: Adaptive Mobile Robotics. World Scientific, pp. 483-490. https://doi.org/10.1142/9789814415958_0062
Hutter, M., Gehring, C., Jud, D., Lauber, A., Bellicoso, C. D., Tsounis, V., Hwangbo, J., Bodie, K., Fankhauser, P., Bloesch, M., Diethelm, R., Bachmann, S., Melzer, A., Hoepflinger, M., oct 2016. ANYmal - a highly mobile and dynamic quadrupedal robot. In: 2016 IEEE/RSJ https://doi.org/10.1109/IROS.2016.7758092
International Conference on Intelligent Robots and Systems (IROS). IEEE. URL: https://doi.org/10.1109%2Firos.2016.7758092
Iida, F., oct 2007. Autonomous robots: From biological inspiration to implementation and control. Artificial Life 13 (4), 419-421. https://doi.org/10.1162/artl.2007.13.4.419
Jakimovski, B., Meyer, B., Maehle, E., 2009. Self-reconfiguring hexapod robot oscar using organically inspired approaches and innovative robot leg amputation mechanism. In: International Conference on Automation, Robotics and Control Systems, ARCS-09, Orlando, USA. https://doi.org/10.5772/8838
Kamagaluh, B., Kumar, J. S., Virk, G. S., jul 2012. Design of multi-terrain climbing robot for petrochemical applications. In: Adaptive Mobile Robotics. World Scientific, pp. 639-646. https://doi.org/10.1142/9789814415958_0082
Katz, D., Kenney, J., Brock, O., 2008. How can robots succeed in unstructured environments. In: In Workshop on Robot Manipulation: Intelligence in Human Environments at Robotics: Science and Systems. Citeseer.
Kennedy, B., Okon, A., Aghazarian, H., Badescu, M., Bao, X., Bar-Cohen, Y., Chang, Z., Dabiri, B. E., Garrett, M., Magnone, L., Sherrit, S., jul 2006. Lemur IIb: a robotic system for steep terrain access. Industrial Robot: An International Journal 33 (4), 265-269. https://doi.org/10.1108/01439910610667872
Kim, D., Di Carlo, J., Katz, B., Bledt, G., Kim, S., 2019. Highly dynamic quadruped locomotion via whole-body impulse control and model predictive control. arXiv preprint arXiv:1909.06586.
Kim, H., Kim, D., Yang, H., Lee, K., Seo, K., Chang, D., Kim, J., aug 2008. Development of a wall-climbing robot using a tracked wheel mechanism. Journal of Mechanical Science and Technology 22 (8), 1490-1498. https://doi.org/10.1007/s12206-008-0413-x
Longo, D., Muscato, G., mar 2006. The alicia/sup 3/ climbing robot: a threemodule robot for automatic wall inspection. IEEE Robotics & Automation Magazine 13 (1), 42-50. https://doi.org/10.1109/MRA.2006.1598052
Maehle, E., Brockmann, W., Grosspietsch, K.-E., Auf, A. E. S., Jakimovski, B., Krannich, S., Litza, M., Maas, R., Al-Homsy, A., 2011. Application of the organic robot control architecture ORCA to the six-legged walking robot OSCAR. In: Organic Computing-A Paradigm Shift for Complex Systems. Springer Basel, pp. 517-530. https://doi.org/10.1007/978-3-0348-0130-0_34
Megaro, V., Thomaszewski, B., Nitti, M., Hilliges, O., Gross, M., Coros, S., nov 2015. Interactive design of 3d-printable robotic creatures. ACM Transactions on Graphics 34 (6), 1-9. https://doi.org/10.1145/2816795.2818137
Murray IV, T. J., Pham, B. N., Pirjanian, P., May 3 2005. Hardware abstraction layer for a robot. US Patent 6,889,118.
Peidró, A., Tavakoli, M., Mar'ın, J. M., Reinoso, O., may 2019. Design of compact switchable magnetic grippers for the HyReCRo structure-climbing robot. Mechatronics 59, 199-212. https://doi.org/10.1016/j.mechatronics.2019.04.007
Peters, G., Pagano, D., Liu, D., Waldron, K., aug 2010. A prototype climbing robot for inspection of complex ferrous structures. In: Emerging Trends in Mobile Robotics. World Scientific. https://doi.org/10.1142/9789814329927_0020
Prados, C., Buonocore, L. R., Castro, M. D., jul 2021. Omnidirectional robotic platform for surveillance of particle accelerator environments with limited space areas. Applied Sciences 11 (14), 6631. https://doi.org/10.3390/app11146631
Qiaoling, D., Yan, L., Sinan, L., 2019. Design of a micro pole-climbing robot. International Journal of Advanced Robotic Systems 16 (3), https://doi.org/10.1177/1729881419852813
Raibert, M., Blankespoor, K., Nelson, G., Playter, R., 2008. BigDog, the roughterrain quadruped robot. IFAC Proceedings Volumes 41 (2), 10822-10825. https://doi.org/10.3182/20080706-5-KR-1001.01833
Roennau, A., Heppner, G., Nowicki, M., Dillmann, R., jul 2014. LAURON v: A versatile six-legged walking robot with advanced maneuverability. In: 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE. https://doi.org/10.1109/AIM.2014.6878051
Schmidt, D., Berns, K., dec 2013. Climbing robots for maintenance and inspections of vertical structures-a survey of design aspects and technologies. Robotics and Autonomous Systems 61 (12), 1288-1305. https://doi.org/10.1016/j.robot.2013.09.002
Sombolestan, M., Chen, Y., Nguyen, Q., 2021. Adaptive force-based control for legged robots. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 7440-7447. https://doi.org/10.1109/IROS51168.2021.9636393
Sprowitz, A., Pouya, S., Bonardi, S., Kieboom, J. V. D., Mockel, R., Billard, A., Dillenbourg, P., Ijspeert, A. J., aug 2010. Roombots: Reconfigurable robots for adaptive furniture. IEEE Computational Intelligence Magazine 5 (3), 20- 32. https://doi.org/10.1109/MCI.2010.937320
Spr¨owitz, A., Moeckel, R., Vespignani, M., Bonardi, S., Ijspeert, A., jul 2014. Roombots: A hardware perspective on 3d self-reconfiguration and locomotion with a homogeneous modular robot. Robotics and Autonomous Systems 62 (7), 1016-1033. https://doi.org/10.1016/j.robot.2013.08.011
Tan, K. C., Wang, L., Lee, T. H., Vadakkepat, P., jul 2006. Evolvable hardware in evolutionary robotics. In: World Scientific Series in Robotics and Intelligent Systems. World Scientific, pp. 33-62. https://doi.org/10.1142/9789812773142_0002
Tanaka, Y., Shirai, Y., Lin, X., Schperberg, A., Kato, H., Swerdlow, A., Kumagai, N., Hong, D., 2022. Scaler: A tough versatile quadruped free-climber robot. arXiv preprint arXiv:2207.01180. https://doi.org/10.1109/IROS47612.2022.9981555
Tavakoli, M., Viegas, C., Marques, L., Pires, J. N., de Almeida, A. T., sep 2013. OmniClimbers: Omni-directional magnetic wheeled climbing robots for inspection of ferromagnetic structures. Robotics and Autonomous Systems 61 (9), 997-1007. https://doi.org/10.1016/j.robot.2013.05.005
Wang, M., Su, Y., Liu, H., Xu, Y., aug 2020. WalkingBot: Modular interactive legged robot with automated structure sensing and motion planning. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN). IEEE. https://doi.org/10.1109/RO-MAN47096.2020.9223474
Yim, M., Zhang, Y., Duff, D., feb 2002. Modular robots. IEEE Spectrum 39 (2), 30-34. https://doi.org/10.1109/6.981854
Yoshida, Y., Ma, S., dec 2010. Design of a wall-climbing robot with passive suction cups. In: 2010 IEEE International Conference on Robotics and Biomimetics. IEEE. https://doi.org/10.1109/ROBIO.2010.5723554
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Carlos Prados, Miguel Hernando, Ernesto Gambao, Alberto Brunete
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)
Datos de los fondos
-
Comunidad de Madrid
Números de la subvención RobotCity230-DIH-CM, Madrid Robotics Digital Innovation Hub, S2018/NMT-4331