Sistema domótico controlado a través de una interfaz cerebro-ordenador
DOI:
https://doi.org/10.4995/riai.2023.18718Palabras clave:
interfaz cerebro-ordenador, domótica, voz, potencial relacionado con eventosResumen
Las interfaces cerebro-ordenador (BCI, de brain-computer interface) permiten utilizar la actividad cerebral de un usuario como canal de comunicación para interactuar con determinados dispositivos. Sin embargo, adaptar los dispositivos del entorno para que sean controlados a través de una BCI no es una tarea sencilla. El objetivo del presente trabajo es controlar un sistema domótico a través de una BCI que permita la construcción de comandos de voz, los cuales serán interpretados por un asistente virtual. Doce usuarios han probado el sistema propuesto para el control de las siguientes aplicaciones y dispositivos: WhatsApp, Spotify, Google Nest, una bombilla inteligente, un enchufe inteligente (para encender y apagar una radio) y un mando de infrarrojos (para controlar una televisión y un aire acondicionado). Los resultados obtenidos han demostrado que la BCI propuesta ha resultado efectiva para el control de sistema domótico flexible y que puede ser adaptado a las necesidades de los usuarios.
Descargas
Citas
Allison, B. Z., Kübler, A., & Jin, J. (2020). 30+ years of P300 brain-computer interfaces. Psychophysiology, 57(7), 1-18. https://doi.org/10.1111/psyp.13569
Aydın, E. A., Bay, Ö. F., & Güler, İ. (2016). Implementation of an Embedded Web Server Application for Wireless Control of Brain Computer Interface Based Home Environments. Journal of Medical Systems, 40(1), 1-10. https://doi.org/10.1007/s10916-015-0386-0
Bangor, A., Kortum, P. T., & Miller, J. T. (2008). An empirical evaluation of the system usability scale. International Journal of Human-Computer Interaction. https://doi.org/10.1080/10447310802205776
Brooke, J. (1996). SUS - A quick and dirty usability scale. Usability Evaluation in Industry, 189(194), 4-7. https://doi.org/10.1002/hbm.20701
Chai, X., Zhang, Z., Guan, K., Lu, Y., Liu, G., Zhang, T., & Niu, H. (2020). A hybrid BCI-controlled smart home system combining SSVEP and EMG for individuals with paralysis. Biomedical Signal Processing and Control, 56, 101687. https://doi.org/10.1016/j.bspc.2019.101687
Corralejo, R., Nicolás-Alonso, L. F., Álvarez, D., & Hornero, R. (2014). A P300-based brain-computer interface aimed at operating electronic devices at home for severely disabled people. Medical and Biological Engineering and Computing, 52(10), 861-872. https://doi.org/10.1007/s11517-014-1191-5
Fernández-Rodríguez, Á., Medina-Juliá, M. T., Velasco-Álvarez, F., & Ron-Angevin, R. (2021). Different effects of using pictures as stimuli in a P300 brain-computer interface under rapid serial visual presentation or row-column paradigm. Medical and Biological Engineering and Computing, 59(4), 869-881. https://doi.org/10.1007/s11517-021-02340-y
Furdea, A., Halder, S., Krusienski, D. J., Bross, D., Nijboer, F., Birbaumer, N., & Kübler, A. (2009). An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology, 46(3), 617-625. https://doi.org/10.1111/j.1469-8986.2008.00783.x
Hart, S. G. (2006). Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 50(9), 904-908. https://doi.org/10.1177/154193120605000909
Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In Advances in Psychology (Vol. 52, Issue C, pp. 139-183). https://doi.org/10.1016/S0166-4115(08)62386-9
Hsieh, K. L., Sun, K. T., Yeh, J. K., & Pan, Y. U. (2017). Home care by auditory Brain Computer Interface for the blind with severe physical disabilities. Proceedings of the 2017 IEEE International Conference on Applied System Innovation: Applied System Innovation for Modern Technology, ICASI 2017, 527-530. https://doi.org/10.1109/ICASI.2017.7988473
Jin, J., Chen, Z., Xu, R., Miao, Y., Wang, X., & Jung, T. P. (2020). Developing a Novel Tactile P300 Brain-Computer Interface with a Cheeks-Stim Paradigm. IEEE Transactions on Biomedical Engineering, 67(9), 2585-2593. https://doi.org/10.1109/TBME.2020.2965178
Jin, J., Li, S., Daly, I., Miao, Y., Liu, C., Wang, X., & Cichocki, A. (2020). The Study of Generic Model Set for Reducing Calibration Time in P300-Based Brain-Computer Interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(1), 3-12. https://doi.org/10.1109/TNSRE.2019.2956488
Kosmyna, N., Tarpin-Bernard, F., Bonnefond, N., & Rivet, B. (2016). Feasibility of BCI control in a realistic smart home environment. Frontiers in Human Neuroscience, 10(August), 10. https://doi.org/10.3389/fnhum.2016.00416
Kubler, A., Neumann, N., Kaiser, J., Kotchoubey, B., Hinterberger, T., & Birbaumer, N. P. (2001). Brain-computer communication: Self-regulation of slow cortical potentials for verbal communication. Archives of Physical Medicine and Rehabilitation, 82(11), 1533-1539. https://doi.org/10.1053/apmr.2001.26621
Labib, F. E. Z. M., Fouad, I. A., Mabrouk, M. S., & Sharawy, A. A. (2020). MULTIPLE CLASSIFICATION TECHNIQUES TOWARD A ROBUST and RELIABLE P300 BCI SYSTEM. Biomedical Engineering - Applications, Basis and Communications, 32(2), 1-12. https://doi.org/10.4015/S1016237220500106
Li, G. L., Wu, J. T., Xia, Y. H., He, Q. G., & Jin, H. G. (2020). Review of semi-dry electrodes for EEG recording. Journal of Neural Engineering, 17(5). https://doi.org/10.1088/1741-2552/abbd50
Liu, Y., Liu, Y., Tang, J., Yin, E., Hu, D., & Zhou, Z. (2020). A self-paced BCI prototype system based on the incorporation of an intelligent environment-understanding approach for rehabilitation hospital environmental control. Computers in Biology and Medicine, 118(January), 103618. https://doi.org/10.1016/j.compbiomed.2020.103618
Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A., & Yger, F. (2018). A review of classification algorithms for EEG-based brain-computer interfaces: A 10 year update. Journal of Neural Engineering, 15(3). https://doi.org/10.1088/1741-2552/aab2f2
Lu, Z., Li, Q., Gao, N., Yang, J., & Bai, O. (2019). Happy emotion cognition of bimodal audiovisual stimuli optimizes the performance of the P300 speller. Brain and Behavior, September, 1-13. https://doi.org/10.1002/brb3.1479
Medina-Juliá, M. T., Fernández-Rodríguez, Á., Velasco-Álvarez, F., & Ron-Angevin, R. (2020). P300-Based Brain-Computer Interface Speller: Usability Evaluation of Three Speller Sizes by Severely Motor-Disabled Patients. Frontiers in Human Neuroscience, 14(October), 1-10. https://doi.org/10.3389/fnhum.2020.583358
Nicolas-Alonso, L. F., & Gomez-Gil, J. (2012). Brain computer interfaces, a review. Sensors, 12(2), 1211-1279. https://doi.org/10.3390/s120201211
Park, S., Cha, H. S., & Im, C. H. (2019). Development of an Online Home Appliance Control System Using Augmented Reality and an SSVEP-Based Brain-Computer Interface. IEEE Access, 7, 163604-163614. https://doi.org/10.1109/ACCESS.2019.2952613
Ryan, D. B., Colwell, K. A., Throckmorton, C. S., Collins, L. M., Caves, K., & Sellers, E. W. (2018). Evaluating Brain-Computer Interface Performance in an ALS Population: Checkerboard and Color Paradigms. Clinical EEG and Neuroscience, 49(2), 114-121. https://doi.org/10.1177/1550059417737443
Saha, S., Mamun, K. A., Ahmed, K., Mostafa, R., Naik, G. R., Darvishi, S., Khandoker, A. H., & Baumert, M. (2021). Progress in Brain Computer Interface: Challenges and Opportunities. Frontiers in Systems Neuroscience, 15(February), 1-20. https://doi.org/10.3389/fnsys.2021.578875
Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N., & Wolpaw, J. R.(2004). BCI2000: A general-purpose brain-computer interface (BCI) system. In IEEE Transactions on Biomedical Engineering (Vol. 51, Issue 6, pp. 1034-1043). https://doi.org/10.1109/TBME.2004.827072
Shivappa, V. K. K., Luu, B., Solis, M., & George, K. (2018). Home automation system using brain computer interface paradigm based on auditory selection attention. I2MTC 2018 - 2018 IEEE International Instrumentation and Measurement Technology Conference: Discovering New Horizons in Instrumentation and Measurement, Proceedings, 1-6. https://doi.org/10.1109/I2MTC.2018.8409863
Sun, K. T., Hsieh, K. L., & Syu, S. R. (2020). Towards an accessible use of a brain-computer interfaces-based home care system through a smartphone. Computational Intelligence and Neuroscience, 2020, 16-18. https://doi.org/10.1155/2020/1843269
Townsend, G., LaPallo, B. K., Boulay, C. B., Krusienski, D. J., Frye, G. E., Hauser, C. K., Schwartz, N. E., Vaughan, T. M., Wolpaw, J. R., & Sellers, E. W. (2010). A novel P300-based brain-computer interface stimulus presentation paradigm: Moving beyond rows and columns. Clinical Neurophysiology, 121(7), 1109-1120. https://doi.org/10.1016/j.clinph.2010.01.030
Utsumi, K., Takano, K., Okahara, Y., Komori, T., Onodera, O., & Kansaku, K. (2018). Operation of a P300-based braincomputer interface in patientswith Duchenne muscular dystrophy. Scientific Reports, 8(1), 4-11. https://doi.org/10.1038/s41598-018-20125-6
Velasco-Álvarez, F., Fernández-Rodríguez, Á., Vizcaíno-Martín, F.-J., Díaz-Estrella, A., & Ron-Angevin, R. (2021). Brain-Computer Interface (BCI) Control of a Virtual Assistant in a Smartphone to Manage Messaging Applications. Sensors, 21(11). https://doi.org/10.3390/s21113716
Velasco-Álvarez, F., Sancha-Ros, S., García-Garaluz, E., Fernández-Rodríguez, Á., Medina-Juliá, M. T. T., & Ron-Angevin, R. (2019). UMA-BCI Speller: an Easily Configurable P300 Speller Tool for End Users. Computer Methods and Programs in Biomedicine, 172, 127-138. https://doi.org/10.1016/j.cmpb.2019.02.015
Wolpaw, J. R., Ramoser, H., McFarland, D. J., & Pfurtscheller, G. (1998). EEG-based communication: Improved accuracy by response verification. IEEE Transactions on Rehabilitation Engineering, 6(3), 326-333. https://doi.org/10.1109/86.712231
Wolpaw, Jonathan R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain-computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767-791. https://doi.org/10.1016/S1388-2457(02)00057-3
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Francisco Velasco-Álvarez, Álvaro Fernández-Rodríguez, Ricardo Ron-Angevin
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)
Datos de los fondos
-
Ministerio de Ciencia, Innovación y Universidades
Números de la subvención PID2021-127261OB-I00 -
Agencia Estatal de Investigación
Números de la subvención PID2021-127261OB-I00 -
European Regional Development Fund
Números de la subvención PID2021-127261OB-I00