Coeficientes de la superficie en modo deslizante directamente en la magnitud de control, un enfoque de esfuerzo reducido

Autores/as

  • Pedro R. Acosta Instituto Tecnológico de Chihuahua / Tecnológico Nacional de México
  • Isidro Robledo-Vega Instituto Tecnológico de Chihuahua / Tecnológico Nacional de México
  • Abraham E. Rodríguez-Mata Instituto Tecnológico de Chihuahua / Tecnológico Nacional de México
  • Rogelio Baray-Arana Instituto Tecnológico de Chihuahua / Tecnológico Nacional de México

DOI:

https://doi.org/10.4995/riai.2023.17980

Palabras clave:

control en modo deslizante, cadena de integradores, rechazo a perturbaciones, castañeteo, esfuerzo de control

Resumen

Se presenta un procedimiento de diseño para el control en modo deslizante de primer orden aplicado a un sistema en forma de cadena de integradores pura o perturbada, (forma canónica controlable perturbada). La ley de control se propone de forma novedosa. La magnitud de control se define directamente por los coeficientes del polinomio de la superficie  de deslizamiento. Se muestra que este procedimiento minimiza en cierto sentido el esfuerzo de control para alcanzar la superficie diseñada. Los cálculos son aún más sencillos que los de las técnicas clásicas en modo deslizante. Además, la elección de una dinámica de superficie estable garantiza un tiempo de alcance finito a la misma. El esfuerzo de control y el castañeteo (chattering) son bajos. Las perturbaciones y términos conocidos que provocan inestabilidad se aprovechan en ciertas condiciones del alcance a la superficie. Se presentan simulaciones que ilustran los resultados y comparando el comportamiento de métodos de control en modo deslizante existentes en la literatura con el propuesto en este artículo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Acosta, P., 2014. Natural surface design for sliding mode control with multiple discontinuous inputs. Journal of the Franklin Institute 351 (8), 4198-4210. https://doi.org/10.1016/j.jfranklin.2014.04.023

Adelipour, S., Ahi, B., Haeri, M., 2020. Dual-mode global stabilization of highorder saturated integrator chains: Lmi-based mpc combined with a nested saturated feedback. Nonlinear Dynamics 102 (1), 211-222. https://doi.org/10.1007/s11071-020-05957-0

Amini, S., Ahi, B., Haeri, M., 2019. Control of high order integrator chain systems subjected to disturbance and saturated control: A new adaptive scheme. Automatica 100, 108-113. https://doi.org/10.1016/j.automatica.2018.10.039

Bartolini, G., Pydynowski, P., 1996. An improved, chattering free, vsc scheme for uncertain dynamical systems. IEEE Transactions on Automatic Control 41 (8), 1220-1226. https://doi.org/10.1109/9.533691

Chalanga, A., Kamal, S., Bandyopadhyay, B., 2014. A new algorithm for continuous sliding mode control with implementation to industrial emulator setup. IEEE/ASME Transactions on Mechatronics 20 (5), 2194-2204. https://doi.org/10.1109/TMECH.2014.2368717

Chitour, Y., Ushirobira, R., Bouhemou, H., 2020. Stabilization for a perturbed chain of integrators in prescribed time. SIAM Journal on Control and Optimization 58 (2), 1022-1048. https://doi.org/10.1137/19M1285937

Fridman, L., Moreno, J. A., Bandyopadhyay, B., Kamal, S., Chalanga, A., 2015. Continuous nested algorithms: The fifth generation of sliding mode. https://doi.org/10.1007/978-3-319-18290-2_2

Hong, Y., 2002. Finite-time stabilization and stabilizability of a class of controlable systems. Systems & control letters 46 (4), 231-236. https://doi.org/10.1016/S0167-6911(02)00119-6

Hong, Y., Yang, G., Cheng, D., Spurgeon, S., 2005. A new approach to terminal sliding mode control design. Asian Journal of Control 7 (2), 177-181. https://doi.org/10.1111/j.1934-6093.2005.tb00386.x

Hu, J., Zhang, H., Liu, H., Yu, X., 2021. A survey on sliding mode control for networked control systems. International Journal of Systems Science 52 (6), 1129-1147. https://doi.org/10.1080/00207721.2021.1885082

Kamal, S., Bandyopadhyay, B., 2012. Arbitrary higher order sliding mode control based on control lyapunov approach. En: 2012 12th International Workshop on Variable Structure Systems. IEEE, pp. 446-451. https://doi.org/10.1109/VSS.2012.6163543

Laghrouche, S., Harmouche, M., Chitour, Y., 2017. Higher order super-twisting for perturbed chains of integrators. IEEE Transactions on Automatic Control 62 (7), 3588-3593. https://doi.org/10.1109/TAC.2017.2670918

Levant, A., 1993. Sliding order and sliding accuracy in sliding mode control. International journal of control 58 (6), 1247-1263. https://doi.org/10.1080/00207179308923053

Levant, A., 2001. Universal single-input-single-output (siso) sliding-mode controllers with finite-time convergence. IEEE transactions on Automatic Control 46 (9), 1447-1451. https://doi.org/10.1109/9.948475

Liu, X., Han, Y., 2014. Finite time control for mimo nonlinear system based on higher-order sliding mode. ISA transactions 53 (6), 1838-1846. https://doi.org/10.1016/j.isatra.2014.09.002

Plestan, F., Glumineau, A., Laghrouche, S., 2008. A new algorithm for highorder sliding mode control. International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal 18 (4-5), 441-453. https://doi.org/10.1002/rnc.1234

Riaz, U., Tayyeb, M., Amin, A. A., 2021. A review of sliding mode control with the perspective of utilization in fault tolerant control. Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering) 14 (3), 312-324. https://doi.org/10.2174/2352096513999201120091512

Ullah, N., Ali, M. A., Ibeas, A., Herrera, J., 2019. Control deslizante fraccionario de la trayectoria y orientación de un quadrotor con cargas suspendidas desconocidas. Revista Iberoamericana de Automática e Informática industrial 16 (3), 321-331. https://doi.org/10.4995/riai.2019.9951

Utkin, V., 2015. Discussion aspects of high-order sliding mode control. IEEE Transactions on Automatic Control 61 (3), 829-833. https://doi.org/10.1109/TAC.2015.2450571

Utkin, V., Guldner, J., Shi, J., 2017. Sliding mode control in electro-mechanical systems. CRC press. https://doi.org/10.1201/9781420065619

Wang, X., Wang, G., Li, S., 2020. Distributed finite-time optimization for integrator chain multiagent systems with disturbances. IEEE Transactions on Automatic Control 65 (12), 5296-5311. https://doi.org/10.1109/TAC.2020.2979274

Yu, X., Efe, O¨ .M. (Eds.), 2015. Recent advances in sliding modes: from control to intelligent mechatronics. Vol. 24. Springer. https://doi.org/10.1007/978-3-319-18290-2

Zimenko, K., Polyakov, A., Efimo, D., Perruquetti, W., 2018. Finite-time and fixed-time stabilization for integrator chain of arbitrary order. En: 2018 European Control Conference (ECC). IEEE, pp. 1631-1635. https://doi.org/10.23919/ECC.2018.8550137

Descargas

Publicado

27-04-2023

Cómo citar

Acosta Cano de los Ríos, P., Robledo-Vega, I., Rodríguez-Mata, A. E. y Baray-Arana, R. (2023) «Coeficientes de la superficie en modo deslizante directamente en la magnitud de control, un enfoque de esfuerzo reducido», Revista Iberoamericana de Automática e Informática industrial, 20(4), pp. 355–365. doi: 10.4995/riai.2023.17980.

Número

Sección

Artículos