Rediseño basado en la experiencia clínica de un andador robótico para la rehabilitación de fractura de cadera
DOI:
https://doi.org/10.4995/riai.2023.17839Palabras clave:
Tecnología asistencial e ingeniería de la rehabilitación, Tecnología robótica, Ingeniería de sistemas centrados en el ser humano, Ingeniería de la rehabilitación y prestación de asistencia sanitaria, Mecatrónica para sistemas de movilidadResumen
La fractura de cadera es una lesión frecuente en personas mayores de 65 años,estando asociada a una reducción en la esperanza de vida. Su rehabilitación se basa en la movilización gradual mediante terapia manual. Sin embargo, estos tratamientos no suelen ser integrales, constan de ejercicios repetitivos, resultan monótonos para el pacientey su seguimientoes principalmente cualitativo. SWalker es un andador robótico basado en un sistema de tracción y de soporte de peso, que integra sensores de marcha. Con una primera versión de este andador se llevó a cabo un estudio clínico que involucró 34 pacientes. A partir de esta experiencia se han extraído los requisitos de diseño que se consideran claves para el desarrollo de este tipo de dispositivos. Sobre la base de estos requisitos se ha construido una segunda versión del andador en la que se ha validado su usabilidad con 5 pacientes. Empleando la escala QUEST 2.0 se han comparado ambas versiones del andador, mostrando mejoras en la segunda versión en seguridad, adaptabilidad y usabilidad
Descargas
Citas
Abrahamsen, B. et al., 2009. Excess mortality following hip fracture: A syste-atic epidemiological review. Osteoporosis International 20:1633-1650. https://doi.org/10.1007/s00198-009-0920-3
Andres Camilo, M. B., 2010. Validación de la versión en español de la evaluación de QUEBEC de usuarios con tecnología de asistencia (QUEST 2.0).
Bach Baunsgaard, C. et al., 2018. Gait training after spinal cord injury: Safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionicsarticle. Spinal Cord 56:106-116. https://doi.org/10.1038/s41393-017-0013-7
La Bara, L. M. A. et al., 2021. Assessment methods of usability and cognitive workload of rehabilitative exoskeletons: A systematic review. Applied Sciences (Switzerland) 11. https://doi.org/10.3390/app11157146
Bayón, C. et al., 2017. Development and evaluation of a novel robotic platform for gait rehabilitation in patients with Cerebral Palsy: CPWalker. Robotics and Autonomous Systems 91:101-114. https://doi.org/10.1016/j.robot.2016.12.015
Cardona, M. et al., 2021. El exoesqueleto de rehabilitación de la marcha ALICE: análisis dinámico y evaluación del sistema de control utilizando cuaternios de Hamilton. Revista Iberoamericana de Automática e Informática industrial 18:48-57. https://doi.org/10.4995/riai.2020.12558
Chen, G. et al., 2013. A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy. Critical Reviews in Biomedical Engineering 41:343-363. https://doi.org/10.1615/CritRevBiomedEng.2014010453
Chesser, T. J. S. et al., 2020. Hip fracture systems-European experience. OTA International: The Open Access Journal of Orthopaedic Trauma 3:e050. https://doi.org/10.1097/OI9.0000000000000050
Chudyk, A. M. et al., 2009. Systematic Review of Hip Fracture Rehabilitation Practices in the Elderly. Archives of Physical Medicine and Rehabilitation 90:246-262. https://doi.org/10.1016/j.apmr.2008.06.036
Colombo, G. et al., 2000. Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development 37:693-700.
Cooper, C., Campion, G., Melton, L. J., 1992. Hip fractures in the elderly: A world-wide projection. Osteoporosis International 2:285-289. https://doi.org/10.1007/BF01623184
Costa, V. et al., 2020. Design of a robotic platform for hip fracture rehabilitation in elderly people. In: Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics. IEEE Computer Society, 599-604. https://doi.org/10.1109/BioRob49111.2020.9224320
Costa, V. et al., 2022. Development and Clinical Validation of a Rehabilitation Platform for Hip Fracture in Elderly Population. 30:1340-1349. https://doi.org/10.1109/TNSRE.2022.3175688
Demers, L. et al., 1996. Development of the Quebec User Evaluation of Satisfaction with assistive Technology (QUEST). Assistive Technology 8:3-13. https://doi.org/10.1080/10400435.1996.10132268
Dijkers, M. P. et al., 2021. Systematic Reviews of Clinical Benefits of Exoskeleton Use for Gait and Mobility in Neurologic Disorders: A Tertiary Study. Archives of physical medicine and rehabilitation 102:300-313. https://doi.org/10.1016/j.apmr.2019.01.025
Dyer, S. M. et al., 2016. A critical review of the long-term disability outcomes following hip fracture. BMC Geriatrics 16. https://doi.org/10.1186/s12877-016-0332-0
Farzaneh, M. M., 2021. A Review Study on the Design of an Exoskeleton Robot. International Journal of Scientific and Technical Research in Engineering 6:10-17.
Fernández-García, M. et al., 2015. Revisión de la incidencia de la fractura de cadera en España. Revista de Osteoporosis y Metabolismo Mineral 7:115-120. https://doi.org/10.4321/S1889-836X2015000400007
Gorgey, A. S., 2018. Robotic exoskeletons: The current pros and cons. World Journal of Orthopedics 9:112. https://doi.org/10.5312/wjo.v9.i9.112
Guzon-Illescas, O. et al., 2019. Mortality after osteoporotic hip fracture: Incidence, trends, and associated factors. Journal of Orthopaedic Surgery and Research 14. https://doi.org/10.1186/s13018-019-1226-6
Hasan, S. K., Dhingra, A. K., 2020. State of the Art Technologies for Exoskeleton Human Lower Extremity Rehabilitation Robots. Journal of Mechatronics and Robotics 4:211-235. https://doi.org/10.3844/jmrsp.2020.211.235
van Hedel, H. J. A., Rosselli, I., Baumgartner-Ricklin, S., 2021. Clinical utility of the over-ground bodyweight-supporting walking system Andago in children and youths with gait impairments. Journal of NeuroEngineering and Rehabilitation 2021 18:1 18:1-20. https://doi.org/10.1186/s12984-021-00827-1
Hollman, J. H., Mcdade, E. M., Petersen, R. C., 2011. Gait & Posture Normative spatiotemporal gait parameters in older adults. Gait & Posture 34:111-118. https://doi.org/10.1016/j.gaitpost.2011.03.024
Kao, P. C. et al., 2013. Effect of robotic performance-based error-augmentation versus error-reduction training on the gait of healthy individuals. Gait and Posture 37:113-120. https://doi.org/10.1016/j.gaitpost.2012.06.025
Kapsalyamov, A. et al., 2019. State of the Art Lower Limb Robotic Exoskeletons for Elderly Assistance. IEEE Access 7:95075-95086. https://doi.org/10.1109/ACCESS.2019.2928010
Kawamoto, H., Sankai, Y., 2002. Comfortable power assist control method for walking aid by HAL-3. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics 4:447-452. https://doi.org/10.1109/ICSMC.2002.1173328
Leal, J. et al., 2016. Impact of hip fracture on hospital care costs: a population-based study. Osteoporosis International 27:549-558. https://doi.org/10.1007/s00198-015-3277-9
Lee, H., Ferguson, P.W., Rosen, J., 2019. Lower limb exoskeleton systems-overview. Wearable Robotics: Systems and Applications:207-229. https://doi.org/10.1016/B978-0-12-814659-0.00011-4
Machida, M. et al., 2011. Epidemiology of hip fractures. IRYO - Japanese Journal of National Medical Services 65:432-439. https://doi.org/10.4055/jkoa.1993.28.3.1153
Parker, M., Johansen, A., 2006. Hip fracture. British Medical Journal 333:27-30. https://doi.org/10.1136/bmj.333.7557.27
Pils, K. et al., 2011. Risk assessment after hip fracture. Zeitschrift für Gerontologie und Geriatrie 44:375-380. https://doi.org/10.1007/s00391-011-0256-4
Sanchez-Villamañan, M. D. C. et al., 2019. Compliant lower limb exoskeletons: A comprehensive review on mechanical design principles. Journal of NeuroEngineering and Rehabilitation 16. https://doi.org/10.1186/s12984-019-0517-9
Shi, D. et al., 2019. A Review on Lower Limb Rehabilitation Exoskeleton Robots. Chinese Journal of Mechanical Engineering (English Edition) 32. https://doi.org/10.1186/s10033-019-0389-8
Stauffer, Y. et al., 2009. The WalkTrainer - A new generation of walking reeducation device combining orthoses and muscle stimulation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 17:38-45. https://doi.org/10.1109/TNSRE.2008.2008288
Subramaniyam, M. et al., 2020. Assistive technologies for elderly - review on recent developments in lower limb and back pain management. Advances in Intelligent Systems and Computing 972:824-830. https://doi.org/10.1007/978-3-030-19135-1_80
Veneman, J. F. et al., 2007. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering 15:379-386. https://doi.org/10.1109/TNSRE.2007.903919
Veronese, N., Maggi, S., 2018. Epidemiology and social costs of hip fracture. Injury 49:1458-1460. https://doi.org/10.1016/j.injury.2018.04.015
Zeilig, G. et al., 2012. Safety and tolerance of the ReWalkTM exoskeleton suit for ambulation by people with complete spinal cord injury: A pilot study. The Journal of Spinal Cord Medicine 35:96. https://doi.org/10.1179/2045772312Y.0000000003
Zhou, J., Yang, S., Xue, Q., 2021. Lower limb rehabilitation exoskeleton robot: A review. Advances in Mechanical Engineering 13:1-17. https://doi.org/10.1177/16878140211011862
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 VANINA COSTA, Cristina Sánchez, Luis Perea, Eduardo Rocon, Abraham Otero, Rafael Raya
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)
Datos de los fondos
-
Ministerio de Ciencia e Innovación
Números de la subvención SWALKERS17;IDI-20220400 (SWALKERS II) -
Ministerio de Ciencia e Innovación
Números de la subvención RTI2018-097122-A-I00 -
Agencia Estatal de Investigación
Números de la subvención PID2019-105110RB-C31