Diseño de una arquitectura para sistemas y aplicaciones en Industria 4.0 basada en computación en la nube y análisis de datos
DOI:
https://doi.org/10.4995/riai.2022.17791Palabras clave:
Industria 4.0, arquitectura de sistemas, computación en la nube, análisis de datos, desarrollo de aplicacionesResumen
El término Industria 4.0 se ha convertido en prioridad y objeto de estudio para empresas y centros de investigación pero aún se encuentra dentro de sus primeras etapas de implementación. Además, las compañías enfrentan dificultades al desarrollar soluciones para Industria 4.0, sin estar seguras de cómo afrontar sus requerimientos básicos. El diseño de una arquitectura de referencia aborda explícitamente este problema, apoya a los profesionales en la implementación de soluciones siendo la base del desarrollo y proporciona un soporte ante los desafíos que la Industria 4.0 representa. Por lo tanto, la contribución de este documento se centra en diseñar una arquitectura de referencia para sistemas y aplicaciones en Industria 4.0 basada en computación en la nube y análisis de datos, mostrando su viabilidad a través de la implementación en un caso de uso: Agricultura 4.0. Mediante esta arquitectura, ingenieros e investigadores podrán enfrentar los desafíos actuales de la producción inteligente, así como investigar, desarrollar e implementar soluciones (aplicaciones y sistemas) guiadas, estandarizadas y a costos accesibles, que cumplan los requerimientos que gobiernan Industria 4.0.
Descargas
Citas
Aheleroff, S., Xu, X., Zhong, R., & Lu, Y. (2021). Digital Twin as a Service (DTaaS) in Industry 4.0: An Architecture Reference Model. Advanced Engineering Informatics, 1-15. https://doi.org/10.1016/j.aei.2020.101225
Almada-Lobo, F. (2015). The Industry 4.0 revolution and the future of Manufacturing Execution Systems (MES). Journal of Innovation Management, 16-21. https://doi.org/10.24840/2183-0606_003.004_0003
Amazon Web Services. (2022). Infrastructura Global. Obtenido de AWS: https://aws.amazon.com/es/about-aws/global-infrastructure/
Angulo, P., Guzmán, C., Jiménez, G., & Romero, D. (2016). A service-oriented architecture and its ICT infrastructure to support eco-efficiency performance monitoring in manufacturing enterprises. International Journal of Computer Integrated Manufacturing, 202-214. https://doi.org/10.1080/0951192X.2016.1145810
AWS. (2022). Regiones y zonas de disponibilidad. Obtenido de AWS: https://aws.amazon.com/es/about-aws/global-infrastructure/regions_az/
Azeem, M., Haleem, A., Shashi, B., Javaid, M., Suman, R., & Nandan, D. (2021). Big data applications to take up major challenges across manufacturing industries: A brief review. Materials Today: Proceedings, 1-10. https://doi.org/10.1016/j.matpr.2021.02.147
Bader, S., Berres, B., Boss, B., Gatterburg, A., & Hoffmeister, M. (Noviembre de 2021). Plattform Industrie 4.0. Obtenido de Details of the Asset Administration Shell - Interoperability at Runtime - Part 2: Exchanging Information via Application Programming Interfaces: https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/Details_of_the_Asset_Administration_Shell_Part2_V1.html
Bauer, J. (24 de Feb de 2021). Using container images to run TensorFlow models in AWS Lambda. Obtenido de AWS: https://aws.amazon.com/es/blogs/machine-learning/using-container-images-to-run-tensorflow-models-in-aws-lambda/
Belman-Lopez, C., Jiménez-García, J., & Hernández-González, S. (2020). Análisis exhaustivo de los principios de diseño en el contexto de Industria 4.0. Revista Iberoamericana de Automática e Informática Industrial, 432-447. https://doi.org/10.4995/riai.2020.12579
Belman-López, C., Jiménez-García, J., Vázquez-López, J., Hernández-González, S., & Franco-Barrón, J. (2020). Elementos fundamentales del sistema de manufactura inteligente en la era de Industria 4.0. Revista Internacional de Investigación e Innovación Tecnológica, 1-26.
Caggiano, A. (2018). Cloud-based manufacturing process monitoring for smart diagnosis services. International Journal of Computer Integrated Manufacturing, 31(7), 612-623. https://doi.org/10.1080/0951192X.2018.1425552
Carnell, J. (2017). Spring Microservices in Action. NY: Manning Publications Co.
Cervantes Maceda, H., Velasco-Elizondo, P., & Castro Careaga, L. (2016). Arquitectura de Software. Conceptos y ciclo de desarrollo. Ciudad de México, México: CENGAGE Learning.
Charro, A., & Schaefer, D. (2018). Cloud Manufacturing as a new type of Product-Service System. International Journal of Computer Integrated Manufacturing, 1018-1033. https://doi.org/10.1080/0951192X.2018.1493228
Chen, T., & Tsai, H.-R. (2016). Ubiquitous manufacturing: Current practices, challenges, and opportunities. Robotics and Computer-Integrated Manufacturing, 1-7. http://dx.doi.org/10.1016/j.rcim.2016.01.001
Dintén, R., López Martínez, P., & Zorrilla, M. (2021). Arquitectura de referencia para el diseño y desarrollo de aplicaciones para la Industria 4.0. Revista Iberoamericana de Automática e Informática Industrial, 300-311. https://doi.org/10.4995/riai.2021.14532
Docker. (2021). Obtenido de Docker: https://www.docker.com/
Francalanza, E., Borg, J., & Constantinescu, C. (2018). Approaches for handling wicked manufacturing system design problems. Procedia CIRP, 67, 134-139. https://doi.org/10.1016/j.procir.2017.12.189
GE. (01 de Noviembre de 2018). Predix Platform | GE Digital. Obtenido de GE: https://www.ge.com/digital/iiot-platform
Geest, M., Tekinerdogan, B., & Catal, C. (2021). Design of a reference architecture for developing smart warehouses in Industry 4.0. Computers in Industry, 1-21. https://doi.org/10.1016/j.compind.2020.103343
Ghobakhloo, M. (2018). The future of manufacturing industry: a strategic road0toward Industry 4.0. Journal of Manufacturing Technology Management, 910-936. https://doi.org/10.1108/JMTM-02-2018-0057
Google Cloud. (2018). Web API Design: The Missing Link. Google LLC.
Gorton, I., & Klein, J. (2015). Distribution, Data, Deployment, Software Architecture Convergence in Big Data Systems. IEEE COMPUTER SOCIETY, 78-85. https://doi.org/10.1109/MS.2014.51
Groover, M. (2001). Automation, Production Systems, and Computer-Integrated Manufacturing. USA: Prentice Hall.
Hermann, M., Otto, B., & Pentek, T. (2015). Design Principles for Industrie 4.0 Scenarios: A Literature Review. ResearchGate, 1-16. https://doi.org/10.1109/HICSS.2016.488
Hohpe, G., & Woolf, B. (2004). Enterprise Integration Patterns. Boston, MA: Addison-Wesley.
Huang , M.-L., & Chuang, T. (2020). A database of eight common tomato pest images. Mendeley Data, V1. doi:10.17632/s62zm6djd2.1
ISA. (Octubre de 2019). Automation IT: RAMI 4.0 Reference Architectural Model for Industrie 4.0. Obtenido de International Society of Automation (ISA): https://www.isa.org/intech/20190405/
ISO/IEC/IEEE 42010. (10 de Jul de 2007). ISO/IEC/IEEE 42010: Defining "architecture". Obtenido de ISO/IEC/IEEE 42010: http://www.iso-architecture.org/ieee-1471/defining-architecture.html
Jocher, G., Stoken, A., Chaurasia, A., Borovec, J., NanoCode012, TaoXie, . . . AlexWang1900. (2021). ultralytics/yolov5: v6.0. Zenodo. https://doi.org/10.5281/zenodo.5563715
Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). Characterising the Digital Twin: A systematic literature review. CIRP Journal of Manufacturing Science and Technology, 36-52. https://doi.org/10.1016/j.cirpj.2020.02.002
Kagermann, H., Wahlster, W., & Helbig, J. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Final report of the Industrie 4.0 Working Group. National Academy of Science and Engineering (acatech)., 1-82. https://doi.org/10.3390/sci4030026
Kakani, V., Nguyen, V., Kumar, B., Kim, H., & Pasupuleti, V. (2020). A critical review on computer vision and artificial intelligence in food industry. Journal of Agriculture and Food Research, 1-12. https://doi.org/10.1016/j.jafr.2020.100033
Karatas, M., Eriskin, L., Deveci, M., Pamucar, D., & Garg, H. (2022). Big Data for Healthcare Industry 4.0: Applications, challenges and future perspectives. Expert Systems with Applications, 1-13. https://doi.org/10.1016/j.eswa.2022.116912
Kusiak, A. (2017). Smart manufacturing. International Journal of Production Research, 508-517. https://doi.org/10.1080/00207543.2017.1351644
Lee, J., Ardakani, H., Yang, S., & Bagheri, B. (2015). Industrial big data analytics and cyber-physical systems for future maintenance & service innovation. Procedia CIRP, 3-7. https://doi.org/10.1016/j.procir.2015.08.026
Lie, J., & Wang, X. (2021). Plant diseases and pests detection based on deep learning: a review. Plant Methods, 1-18. https://doi.org/10.1186/s13007-021-00722-9
Liu, C., Vengayil, H., Lu, Y., & Xu, X. (2019). A Cyber-Physical Machine Tools Platform using OPC UA and MTConnect. Journal of Manufacturing Systems, 1-14. https://doi.org/10.1016/j.jmsy.2019.04.006
Liu, Y., Peng, Y., Wang, B., Yao, S., & Liu, Z. (2017). Review on Cyber-physical Systems. Journal of Automatica Sinica, 27-40. https://doi.org/10.1109/JAS.2017.7510349
Liu, Z., Sampaio, P., Pishchulov, G., Mehandjiev, N., Cisneros-Cabrera, S., Schirrmann, A., . . . Bnouhanna, N. (2022). The architectural design and implementation of a digital platform for Industry 4.0 SME collaboration. Computers in Industry, 1-12. https://doi.org/10.1016/j.compind.2022.103623
López Martínez, P., Dintén, R., Drake, J., & Zorrilla, M. (2021). A big data-centric architecture metamodel for Industry 4.0. Future Generation Computer Systems, 263-284. https://doi.org/10.1016/j.future.2021.06.020
Lu, Y., Liu, C., Wang, K.-K., Huang, H., & Xu, X. (2019). Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robotics and Computer Integrated Manufacturing, 1-14. https://doi.org/10.1016/j.rcim.2019.101837
Macías, A., Navarro, E., & González, P. (2019). A Microservice-Based Framework for Developing Internet of Things and People Applications. Proceedings, 1-13. https://doi.org/10.3390/proceedings2019031085
Malathi, V., & Gopinath, M. (2021). Classification of pest detection in paddy crop based on transfer learning approach. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science. https://doi.org/10.1080/09064710.2021.1874045
Miny, T., Stephan, G., Usländer, T., & Vialkowitsch, J. (Abril de 2021). Plattform Industrie 4.0. Obtenido de Functional View of the Asset Administration Shell in an Industrie 4.0 System Environment: https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/Functional-View.html
Mishra, A. (2019). Machine Learning in the AWS Cloud. Indianapolis, Indiana: John Wiley & Sons, Inc. https://doi.org/10.1002/9781119556749
Nakagawa, E. Y., Antonino, P. O., Schnicke, F., Capilla, R., Kuhn, T., & Liggesmeyer, P. (2021). Industry 4.0 reference architectures: State of the art and future trends. Computers & Industrial Engineering, 1-13. https://doi.org/10.1016/j.cie.2021.107241
Niknejad, N., Ismail, W., Ghani, I., Nazari, B., Bahari, M., & Hussin, A. (2020). Understanding Service-Oriented Architecture (SOA): A systematic literature review and directions for further investigation. Information Systems, 1-27. https://doi.org/10.1016/j.is.2020.101491
NIST. (16 de Abril de 2018). Framework for Improving Critical Infrastructure Cybersecurity. Obtenido de National Institute of Standards and Technology: https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
Pallathadka, H., Sajja, G., Phasinam, K., Ritonga, M., Naved, M., Bansal, R., & Quiñonez-Choquecota, J. (2021). An investigation of various applications and related challenges in cloud computing. Materials Today: Proceedings, 1-5. https://doi.org/10.1016/j.matpr.2021.11.383
Pereira, A., & Romero, F. (2017). A review of the meaning and the implications of the Industry 4.0 concept. En P. Manufacturing (Ed.), Manufacturing Engineering Society International Conference (págs. 1206-1214). Vigo, España: Elsevier. https://doi.org/10.1016/j.promfg.2017.09.032
Poccia, D. (2016). AWS Lambda in Action. Manning.
PwC Middle East. (23 de 10 de 2018). Big investments with big impacts and rapid returns. Obtenido de PwC Middle East : https://www.pwc.com/m1/en/publications/industry-40-survey/big-investments.html
Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., . . . Nee, A. (2019). Enabling technologies and tools for digital twin. Journal of Manufacturing Systems, 1-19. https://doi.org/10.1016/j.jmsy.2019.10.001
R, S., & R, S. (2017). Data Mining with Big Data. Intelligent Systems and Control (ISCO) (págs. 246-250). Coimbatore, India: IEEE. doi: 10.1109/ISCO.2017.7855990
RedHat. (2021). ¿Que es una api rest? Obtenido de RedHat: https://www.redhat.com/es/topics/api/what-is-a-rest-api#rest
Richards, M. (2015). Software Arquitecture Patterns. Gravenstein Highway North, Sebastopol, CA: O'Reilly Media, Inc.
Rosen, D. (2019). Thoughts on Design for Intelligent Manufacturing. Engineering, 1-6. https://doi.org/10.1016/j.eng.2019.07.011
Sahba, R., Radfar, R., Ghatari, A. R., & Ebrahimi, A. P. (2021). Development of Industry 4.0 predictive maintenance architecture for broadcasting chain. Advanced Engineering Informatics, 1-11. https://doi.org/10.1016/j.aei.2021.101324
Singh, D., Jain, N., Jain, P., & Kayal, P. (2019). PlantDoc: A Dataset for Visual Plant Disease Detection. arXivLabs, 1-5. https://doi.org/10.1145/3371158.3371196
Software Engineering Institute. (04 de May de 2018). Attribute-Driven Design - Create software architectures using architecturally significant requirements. Obtenido de Software Engineering Institute at Carnegie Mellon University: https://resources.sei.cmu.edu/asset_files/FactSheet/2018_010_001_513930.pdf
Sony, M., Antony, J., Mc Dermott, O., & Garza-Reyes, J. (2021). An empirical examination of benefits, challenges, and critical success factors of industry 4.0 in manufacturing and service sector. Technology in Society, 1-12. https://doi.org/10.1016/j.techsoc.2021.101754
Tao, F., Qi, Q., Wang, L., & Nee, A. (2019). Digital Twins and Cyber-Physical Systems toward Smart Manufacturing and Industry 4.0: Correlation and Comparison. Engineering, 653-661. https://doi.org/10.1016/j.eng.2019.01.014
The Apache Software Foundation. (2020). Apache Avro. Obtenido de Apache Avro: https://avro.apache.org/
Tian, W., & Zhao, Y. (2015). Optimized Cloud Resource Management and Scheduling. Morgan Kaufmann. :https://doi.org/10.1016/C2013-0-13415-0
Tuptuk, N., & Hailes, S. (2018). Security of smart manufacturing systems. Journal of Manufacturing Systems, 93-106. https://doi.org/10.1016/j.jmsy.2018.04.007
Wang, X., Ong, S., & Nee, A. (2017). A comprehensive survey of ubiquitous manufacturing research. International Journal of Production Research, 604-628. https://doi.org/10.1080/00207543.2017.1413259
Wankhede, V. A., & Vinodh, S. (2021). Analysis of Industry 4.0 challenges using best worst method: A case study. Computers & Industrial Engineering, 1-13. https://doi.org/10.1016/j.cie.2021.107487
Wiesner, S., & Thoben, K.-D. (2016). Requirements for models, methods and tools supporting servitisation of products in manufacturing service ecosystems. International Journal of Computer Integrated Manufacturing, 1-12. https://doi.org/10.1080/0951192X.2015.1130243
Xu, L. D., & Duan, L. (2018). Big data for cyber physical systems in industry 4.0: a survey. Enterprise Information Systems, 1-23. https://doi.org/10.1080/17517575.2018.1442934
Xu, L., Xu, E., & Li, L. (2018). Industry 4.0: state of the art and future trends. International Journal of Production Research, 56, 2941-2962. https://doi.org/10.1080/00207543.2018.1444806
Yang, H., Kumara, S., Bukkapatnam, S., & Tsung, F. (2019). The Internet of Things for Smart Manufacturing: A Review. IISE Transactions, 1-36. https://doi.org/10.1080/24725854.2018.1555383
Zhong, R., Xu, X., Klotz, E., & Newman, S. (2017). Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering, 616-630. https://doi.org/10.1016/J.ENG.2017.05.015
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Carlos Eduardo Belman Lopez, J.A Jiménez-García, J.A Vázquez-Lopez, K.A. Camarillo-Gómez
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)
Datos de los fondos
-
Consejo Nacional de Ciencia y Tecnología
Números de la subvención CVU 773443