Aplicaciones de control predictivo en plantas solares CCP

Autores/as

  • Antonio J. Gallego Len Universidad de Sevilla
  • Adolfo J. Sánchez del Pozo Munster Technological University
  • Eduardo F. Camacho Universidad de Sevilla

DOI:

https://doi.org/10.4995/riai.2022.16664

Palabras clave:

Control Predictivo, Control automático, Energía solar, Optimización, cilindro-parabólico

Resumen

Uno de los principales métodos para mejorar la eficiencia en el uso y aprovechamiento de la energía solar es la aplicación de técnicas avanzadas de control. En este trabajo se presenta un estado del arte de las aplicaciones de control predictivo en plantassolares de pequeña y gran escala. Se presentan además dos aplicaciones reales: una que se diseño para la planta experimental ACUREX en la Plataforma solar de Almería (PSA). El controlador fue probado en el campo real con buen desempeño. La otra aplicación describe el diseño de un controlador predictivo para plantas comerciales de colectores cilindro parabólicos (CCP) que está instalado en 13 plantas Españolas así como en las plantas de Mojave en California (USA). Se muestran dos resultados reales obtenidos en la planta Mojave Beta con el controlador propuesto.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Antonio J. Gallego Len, Universidad de Sevilla

Departamento de Ingeniería de Sistemas y Automática

Adolfo J. Sánchez del Pozo, Munster Technological University

Department of Mechanical, Biomedical and Manufacturing Engineering

Eduardo F. Camacho, Universidad de Sevilla

Departamento de Ingeniería de Sistemas y Automática

Citas

Agency, U. S. E. P., 2018. Avoided emissions and generation tool (avert). URL: https://www.epa.gov/statelocalenergy/avoided-emissions-and-generation-tool-avert

Alsharkawi, A., Rossiter, J. A., 2017. Towards an improved gain scheduling predictive control strategy for a solar thermal power plant. IET Control Theory & Applications 11(12), 1938-1947. https://doi.org/10.1049/iet-cta.2016.1319

Alvarez, J., L.Yebra, M.Berenguel, 2008. Adaptative repetitive control for resonance cancellation of a distributed solar collector fields. International Journal of Adaptative Control and Signal Processing 23, 331-352. https://doi.org/10.1002/acs.1045

Andrade, G. A., Pagano, D. J., Alvarez, J. D., Berenguel, M., 2013. A practical nmpc with robustness of stability applied to distributed solar power plants. Solar Energy 92, 106-122. https://doi.org/10.1016/j.solener.2013.02.013

Badal, F. R., Das, P., Sarker, S. K., Das, S. K., Apr 2019. A survey on control issues in renewable energy integration and microgrid. Protection and Control of Modern Power Systems 4 (1), 8. https://doi.org/10.1186/s41601-019-0122-8

Berenguel, M., 1996. Contributions to the control of distributed solar collectors. Ph.D. thesis, Universidad de Sevilla.

Berenguel, M., Arahal, M. R., Camacho, E. F., 1997. Modeling free response of a solar plant for predictive control. In: Proceedings of the 11th IFAC Symposium on Systems Identification SYSID1997. https://doi.org/10.1016/S1474-6670(17)43011-4

Berenguel, M., Cirre, C. M., Klempous, R., Maciejewski, H., Nikodem, M., Nikodem, J., Rudas, I., Valenzuela, L., 2005. Hierarchical control of a distributed solar collector field. Computer Aided Systems Theory EUROCAST 2005 3643, 614-620. https://doi.org/10.1007/11556985_82

Blanco, M. J., Santigosa, L. R., 2017. Advances in Concentrating Solar Thermal Research and Technology, 1st Edition. Woodhead Publishing. https://doi.org/10.1016/B978-0-08-100516-3.00001-0

Camacho, E. F., Berenguel, M., August 1994. Application of generalized predictive control to a solar power plant. In: The Third IEEE Conference on Control Applications. Glasgow. https://doi.org/10.1109/CCA.1994.381468

Camacho, E. F., Berenguel, M., Gallego, A. J., 2013. Control of thermal solar energy plants. Journal of process control. https://doi.org/10.1016/j.jprocont.2013.09.026

Camacho, E. F., Berenguel, M., Rubio, F., Martınez., D., 2012. Control of Solar Energy Systems. Springer-Verlag. https://doi.org/10.1007/978-0-85729-916-1

Camacho, E. F., Bordons, C., 2004. Model Predictive Control, 2nd Edition. Springer Verlag.

Camacho, E. F., Gallego, A. J., 2013. Optimal operation in solar trough plants: a case study. Solar Energy 95, 106-117. https://doi.org/10.1016/j.solener.2013.05.029

Camacho, E. F., Gallego, A. J., 2015. Model predictive control in solar trough plants: A review. In: 5th IFAC Conference on Nonlinear MPC, September 17-20. Sevilla (Spain).

Camacho, E. F., Rubio, F. R., Berenguel, M., 1997. Advanced control of solar plants. Springer-Verlag. https://doi.org/10.1007/978-1-4471-0981-5

Camacho, E. F., Rubio, F. R., Berenguel, M., Valenzuela, L., 2007. A survey on control schemes for distributed solar collector fields. part II: Advanced control approaches. Solar Energy 81, 1252-1272. https://doi.org/10.1016/j.solener.2007.01.001

Camacho, E. F., Sanchez, A. J., Gallego, A. J., 2019. Solar Energy Systems: Progress and future directions. Nova Publishers, Ch. Model Predictive Control of Large Scale Solar Trough Plants, pp. 1-59.

Carmona, R., 1985. Analisis, modelado y control de un campo de colectores solares distribuidos con sistema de seguimiento en un eje. Ph.D. thesis, Universidad de Sevilla.

Cirre, C. M., Berenguel, M., Valenzuela, L., Klempous., R., 2009. Reference governor optimization and control of a distributed solar collector field. European Journal of Operational Research 193, 709-717. https://doi.org/10.1016/j.ejor.2007.05.056

Duffie, J., Beckman, J., 1991. Solar engineering of thermal processes, 2nd Edition. Wiley-Interscience.

European Comission, 2015. Communication of the Commission to the European Parlament and the Council concerning the Paris Protocol- A blueprint for tackling global climate change beyond 2020. https://ec.europa.eu/commission/publications/paris-protocol-blueprinttackling-global-climate-change-beyond-2020 en, (accessed May 1, 2019).

Flueckiger, S., b, Z. Y., Garimella, S. V., 2011. An integrated thermal and mechanical investigation of molten-salt thermocline energy storage. Applied Energy 88, 2098-2105. https://doi.org/10.1016/j.apenergy.2010.12.031

Frejo, J. R., Camacho, E. F., 2020. Centralized and distributed model predictive control for the maximizationof the thermal power of solar parabolic-trough plants. Solar Energy 204, 190-199. https://doi.org/10.1016/j.solener.2020.04.033

Gallego, A. J., Camacho, E. F., 2012a. Adaptative state-space model predictive control of a parabolic-trough field. Control Engineering Practice 20 (9), 904-911. https://doi.org/10.1016/j.conengprac.2012.05.010

Gallego, A. J., Camacho, E. F., 2012b. Estimation of effective solar radiation in a parabolic trough field. Solar Energy 86, 3512-3518. https://doi.org/10.1016/j.solener.2011.11.012

Gallego, A. J., Fele, F., Camacho, E. F., Yebra, L. J., 2013. Observer-based model predictive control of a solar trough plant. Solar Energy 97, 426-435. https://doi.org/10.1016/j.solener.2013.09.002

Gallego, A. J., Macias, M., de Castilla, F., Camacho, E. F., 2019a. Mathematical modeling of the mojave solar plants. Energies 12 (21), 4197. https://doi.org/10.3390/en12214197

Gallego, A. J., Merello, G. M., Berenguel., M., F. Camacho, E., 2019b. Gainscheduling model predictive control of a fresnel collector field. Control Engineering Practice 82, 1-13. https://doi.org/10.1016/j.conengprac.2018.09.022

Gil, P., Henriques, J., Cardoso, A., Carvalho, P., Dourado, A., 2014. Affine neural network-based predictive control applied to a distributed solar collector field. IEEE Transactions on Control Systemas Technology 22(2), 585-596. https://doi.org/10.1109/TCST.2013.2260545

Goswami, D. Y., Kreith, F., Kreider, J. F., 2000. Principles of Solar Engineering, 2nd Edition. Taylor&Francis.

G.Pin, M.Falchetta, G.Fenu, 2008. Adaptative time-warped control of molten salt distributed collector solar fields. Control Engineering and Practice 16, 813-823. https://doi.org/10.1016/j.conengprac.2007.08.008

He, G., Chen, Q., Kang, C., Xia, Q., Jul. 2016. Optimal offering strategy for concentrating solar power plants in joint energy, reserve and regulation markets. IEEE Transactions on Sustainable Energy 7 (3), 1245-1254. https://doi.org/10.1109/TSTE.2016.2533637

Heeckt, C., Kolaric, S., 2020. Urban sustainability in europe: What is driving cities' environmental changes? Tech. rep., European Environment Agency. URL: https://www.eea.europa.eu/publications/ urban-sustainability-in-europe-what

Islam, M. T., Huda, N., Abdullah, A. B., Saidur, R., 2018. A comprehensive review of state of the art concentrating solar power (csp) technologies: Current status and research trends. Renewable and Sustainable Energy Reviews 91,987-1018. https://doi.org/10.1016/j.rser.2018.04.097

L.Brus, T.Wigren, D.Zambrano, 2010. Feedforward model predictive control of a non-linear solar collector plant with varying delays. IET Journal of Control Theory and Applications 4 (8), 1421-1435. https://doi.org/10.1049/iet-cta.2009.0315

Lemos, J. M., Neves-Silva, R., Igreja, J. M., 2014. Adaptive Control of Solar Energy Collector Systems. Springer-Verlag. https://doi.org/10.1007/978-3-319-06853-4

Lima, D. M., Normey, J. L., Santos, T. L. M., 2016. Temperature control in a solar collector field using filtered dynamic matrix control. ISA Transactions 62, 39-49. https://doi.org/10.1016/j.isatra.2015.09.016

Limon, D., Alvarado, I., Alamo, T., Camacho, E., 2010. Robust tube-based mpc for tracking of constrained linear systems with additive disturbances. Journal of Process Control 20, 248-260. https://doi.org/10.1016/j.jprocont.2009.11.007

Liu, Q., Bai, Z., Sun, J., Yan, Y., Gao, Z., Jin, H., 2016. Thermodynamics investigation of a solar power system integrated oil and molten salt as heat transfer fluids. Applied Thermal Engineering 93, 967-977. https://doi.org/10.1016/j.applthermaleng.2015.10.071

Meaburn, A., Hughes, F., 1997. Feedforward control of solar thermal power plants. Journal of Solar Energy Engineering 119, 52-60. https://doi.org/10.1115/1.2871838

N.A Engineering, 2008. National Academy of Engineering. Grand challenges for engineering. www.engineeringchallenges.org, (accessed May 1, 2019). URL: www.engineeringchallenges.org

National Renewable Energy Laboratory (NREL), 2021a. Concentrating Solar Power Projects. Mojave Solar Project. (accessed May 1, 2019). URL: https://solarpaces.nrel.gov/project/mojave-solar-project

National Renewable Energy Laboratory (NREL), 2021b. Concentrating Solar Power Projects. Solana Generating Station. (accessed May 1, 2019). URL: https://solarpaces.nrel.gov/project/solana-generating-station

NREL Helios, Mar. 2020. Concentrated Solar Power Projects. Helios I. URL: https://solarpaces.nrel.gov/helios-i

Pin, G., Falchetta, M., Fenu, G., 2009. Modeling and control of concentrating solar power systems: a discrete-time adaptative scheme for temperature control in molten-salt solar collector-fields. In Solar Collectors: Energy Conservation, Design and Applications Series: Renewable Energy: Research, Development and Policies. Nova Publishers, 15-39.

Rawlings, J., Mayne, D., 2009. Model Predictive Control: Theory and Design. Cheryl M. Rawlings.

Reviriego, A. N., del Olmo, F. H., Alvarez-Barcia, L., 2017. Nonlinear adaptive control of heat transfer fluid temperature in a parabolic trough solar power plant. Energies 10, 1-12. https://doi.org/10.3390/en10081155

Rubio, F. R., Camacho, E. F., Berenguel, M., 2006. Control de campos de colectores solares. RIAI Vol 3, No.4, 26-45.

Ruız, S., Dominguez, J. R., Camacho, E. F., 2021. Model predictive control based on deep learning for solar parabolic trough plants. Renewable Energy 180, 193-202. https://doi.org/10.1016/j.renene.2021.08.058

Sanchez, A. J., Gallego, A. J., Esca˜no, J., Camacho, E., 2018a. Temperature homogenization of a solar trough field for performance improvement. Solar Energy 165, 1-9. https://doi.org/10.1016/j.solener.2018.03.001

Sanchez, A. J., Gallego, A. J., Esca˜no, J., Camacho, E., 2019a. Adaptive incremental state space mpc for collector defocusing of a parabolic trough plant. Solar Energy 184, 105-114. https://doi.org/10.1016/j.solener.2019.03.094

Sanchez, A. J., Gallego, A. J., Esca˜no, J. M., Camacho, E. F., Nov. 2018b. Event-based mpc for defocusing and power production of a parabolic trough plant under power limitation. Solar Energy 174, 570 - 581. https://doi.org/10.1016/j.solener.2018.09.044

Sanchez, A. J., Gallego, A. J., Esca˜no, J. M., Camacho, E. F., 2019b. Thermal balance of large scale parabolic trough plants: A case study. Solar Energy 190, 69 - 81. https://doi.org/10.1016/j.solener.2019.08.001

Sanchez, A. J., Gallego, A. J., Esca˜no, J. M., Camacho, E. F., 2020. Parabolic trough collector defocusing analysis: Two control stages vs four control stages. Solar Energy 209, 30-41. https://doi.org/10.1016/j.solener.2020.09.001

Shahzad, U., 2015. The need for renewable energy sources. ITEE Journal, 16-18. URL: https://www.researchgate.net/publication/316691176_The_Need_For_Renewable_Energy_Sources https://doi.org/10.1016/S1755-0084(15)30043-0

Silva, R., Lemos, J., Rato, L., 2003. Variable sampling adaptive control of a distributed collector solar field. IEEE Control Systems Technology 11, 765- 772. https://doi.org/10.1109/TCST.2003.816407

SolarPaces, 2017. Csp project development. URL: https://www.solarpaces.org/csp-technologies/csp-potential-solar-thermal-energy-by-member-nation/usa/

Stuetzle, T., Blair, N., Mitchell, J., Beckman, A., 2004. Automatic control of a 30mwe segs vi parabolic trough plant. Solar Energy 76, 187-193. https://doi.org/10.1016/j.solener.2003.01.002

Torrico, B., L.Roca, Normey-Rico, J., Guzman, J., L.Yebra, November 2010. Robust nonlinear predictive control applied to a solar collector field in a solar desalination plant. IEEE Transactions on Control Systems Technology18 (6), 1430-1439. https://doi.org/10.1109/TCST.2009.2039137

Yang, Z., Suresh, Garimella, V., 2010. Thermal analysis of solar thermal energy storage in a molten-salt thermocline. Solar Energy 84, 974-985. https://doi.org/10.1016/j.solener.2010.03.007

Descargas

Publicado

21-03-2022

Cómo citar

Gallego Len, A. J. ., Sánchez del Pozo, A. J. . y F. Camacho, E. (2022) «Aplicaciones de control predictivo en plantas solares CCP», Revista Iberoamericana de Automática e Informática industrial, 19(3), pp. 309–317. doi: 10.4995/riai.2022.16664.

Número

Sección

Sección especial: “Técnicas de control y optimización como solución a problemas de la sociedad”

Datos de los fondos