Optimización de temperatura en reactores raceway para la producción de microalgas mediante regulación de nivel
DOI:
https://doi.org/10.4995/riai.2022.16586Palabras clave:
Microalgas, Reactores abiertos, Optimización de temperatura, ControlResumen
En los sistemas de producción de microalgas, además del pH y el oxígeno disuelto, otros parámetros que afectan de forma considerable al crecimiento de las microalgas son la radiación solar y la temperatura. La radiación solar no es controlable y es considerada como la principal perturbación del sistema. En relación a la temperatura, un valor inadecuado de la misma reduce de manera notoria la productividad de biomasa en los fotobioreactores y puede incluso causar el colapso total de los cultivos. El control directo de la temperatura en reactores abiertos a gran escala se considera inviable debido a la gran cantidad de energía requerida, por lo que se suele optar por la opción de usar sistemas pasivos o semipasivos. Este artículo presenta un método indirecto para la optimización de la temperatura en fotobioreactores de escala industrial haciendo uso de un modelo de balance térmico del sistema y de predicciones climáticas futuras.Descargas
Citas
Barcelo-Villalobos, M., Gomez-Serrano, C., Sanchez-Zurano, A., Alameda-Garcia, L., Esteve-Maldonado, S., Pena, J., Acien, F. G., 2019. Variations of culture parameters in a pilot-scale thin-layer reactor and their influence on the performance of Scenedesmus almeriensis culture. Bioresource Technology Reports 6, 190 - 197. DOI: 10.1016/j.biteb.2019.03.007 https://doi.org/10.1016/j.biteb.2019.03.007
Bechet, Q., Laviale, M., Arsapin, N., Bonnefond, H., Bernard, O., 2017. Modeling the impact of high temperatures on microalgal viability and photosynthetic activity. Biotechnology for Biofuels 10, 136. DOI: 10.1186/s13068-017-0823-z https://doi.org/10.1186/s13068-017-0823-z
Bechet, Q., Shilton, A., Guieysse, B., 2013. Modeling the effects of light and temperature on algae growth: State of the art and critical assessment for productivity prediction during outdoor cultivation. Biotechnology Advances 31 (8), 1648 - 1663. DOI: 10.1016/j.biotechadv.2013.08.014 https://doi.org/10.1016/j.biotechadv.2013.08.014
Bernard, O., Remond, B., 2012. Validation of a simple model accounting for light and temperature effect on microalgal growth. Bioresource Technology 123, 520 - 527. DOI: 10.1016/j.biortech.2012.07.022 https://doi.org/10.1016/j.biortech.2012.07.022
Camacho, F., Garcia, F., Fernandez, J. M., Chisti, Y., Molina, E., 2003. A mechanistic model of photosynthesis in microalgae. Biotechnology and Bioengineering 81(4), 459 - 473. DOI: 10.1002/bit.10492 https://doi.org/10.1002/bit.10492
De-Luca, R., Bechet, Q., Bezzo, F., Bernard, O., 2016. Optimal operation of algal ponds accounting for future meteorology. IFAC -PapersOnLine 49(7), 1062 - 1067. DOI: 10.1016/j.jprocont.2017.03.010 https://doi.org/10.1016/j.jprocont.2017.03.010
De-Luca, R., Bezzo, F., Bechet, Q., Bernard, O., 2017. Exploting meteorological forecast for the optimal operation of algal ponds. Journal of Process Control 55, 55 - 65. DOI: 10.1016/j.jprocont.2017.03.010 https://doi.org/10.1016/j.jprocont.2017.03.010
De-Luca, R., Trabuio, M., Barolo, M., Bezzo, F., 2018. Microalgae growth optimization in open ponds with uncertain weather data. Computers and Chemical Engineering 117, 410 - 419. DOI: 10.1016/j.compchemeng.2018.07.005 https://doi.org/10.1016/j.compchemeng.2018.07.005
Guzman, J. L., Acien, F. G., Berenguel, M., 2021. Modelling and control of microalgae production in industrial photobioreactors. Revista Iberoamericana de Automatica e Inform ' atica Industrial 18(1), 1 - 18. DOI: 10.4995/riai.2020.13604 https://doi.org/10.4995/riai.2020.13604
Huesemann, M., Crowe, B., Waller, P., Chavis, A., Hobbs, S., Edmundson, S., Wigmosta, M., 2016. A validated model to predict microalgae growth in outdoor pond cultures subjected to fluctuating light intensities and water temperatures. Algal Research 13, 195 - 206. DOI: 10.1016/j.algal.2015.11.008 https://doi.org/10.1016/j.algal.2015.11.008
Hwan Ryu, K., Lee, J., Heo, S., Lee, J., 2019. Improved microalgae production by using a heat supplied open raceway pond. Industrial & Engineering Chemistry Research 58 (21), 9099 - 9108. DOI: 10.1021/acs.iecr.9b00986 https://doi.org/10.1021/acs.iecr.9b00986
Marchante, G., Acosta, A., Gonzalez, A., Zamarreno, J., Alvarez, V., 2021. Comfort constraints evaluation in predictive controller for energy efficiency. Revista Iberoamericana de Automatica e Informatica Industrial 18(2), 146 - 159. DOI: 10.4995/riai.2020.13937 https://doi.org/10.4995/riai.2020.13937
Molina, E., Garca, F., Sanchez, J. A., Fernandez, J. M., Acien, F. G., Contreras, A., 1994. A mathematical model of microalgal growth in light-limited chemostat culture. Chemical Technology and Biotechnology 61(2), 167 - 173. DOI: 10.1002/jctb.280610212 https://doi.org/10.1002/jctb.280610212
Nalley, J. O., O'Donnell, D. R., Litchman, E., 2018. Temperature effects on growth rates and fatty acid content in freshwater algae and cyanobacteria. Algal Research 35, 500 - 507. DOI: 10.1016/j.algal.2018.09.018 https://doi.org/10.1016/j.algal.2018.09.018
Pantano, M. N., Fernandez, M. C., Rodrıguez, L., Scaglia, G. J., 2021. Dynamic optimization based on fourier application to the biodiesel process. Revista Iberoamericana de Automatica e Informatica Industrial 18(1), 32 - 38. DOI: 10.4995/riai.2020.12920 https://doi.org/10.4995/riai.2020.12920
Pawlowski, A., Mendoza, J. L., Guzman, J. L., Berenguel, M., Acien, F. G., Dormido, S., 2015. Selective pH and dissolved oxygen control strategy for a raceway rector within an event-based approach. Control Engineering Practice 44, 209-218. DOI: 10.1016/j.conengprac.2015.08.004 https://doi.org/10.1016/j.conengprac.2015.08.004
Pooya, D., Bahri, P. A., Moheimani, N. R., 2018. Modeling the effect of temperature on microalgal growth under outdoor conditions. Computer Aided Chemical Engineering 43, 55 - 60. DOI: 10.1016/B978-0-444-64235-6.50012-7 https://doi.org/10.1016/B978-0-444-64235-6.50012-7
Ras, M., Steyer, J. P., Bernard, O., 2013. Temperature effect on microalgae: A crucial factor for outdoor production. Reviews in Environmental Science and Bio/Technology 12 (2), 153 - 164. DOI: 10.1007/s11157-013-9310-6 https://doi.org/10.1007/s11157-013-9310-6
Rodrıguez, E., Acien, F. G., Guzman, J. L., Berenguel, M., Visioli, A., 2021. A new model to analyze the temperature effect on the microalgae performance at large scale raceway reactors. Biotechnology & Bioengineering. DOI: 10.1002/bit.27617 https://doi.org/10.1002/bit.27617
Rodriguez, E., Beschi, M., Guzman, J. L., Berenguel, M., Visioli, A., 2019. Daytime/Nighttime event-based PI control for the pH of a microalgae raceway reactor. Processes 7(5), 247-263. DOI: 10.3390/pr7050247 https://doi.org/10.3390/pr7050247
Rodriguez, E., Guzman, J. L., Berenguel, M., Acien, F. G., Visioli, A., 2020. Diurnal and nocturnal pH control in microalgae raceway reactors by combining classical and event-based control approaches. Water Science & Technology 82(6), 1155 - 1165. DOI: 10.2166/wst.2020.260 https://doi.org/10.2166/wst.2020.260
Singh, S. P., Singh, P., 2015. Effect of temperature and light on the growth of algae species: A review. Renewable and Sustainable Energy Reviews 50, 431 - 444. DOI: 10.1016/j.rser.2015.05.024 https://doi.org/10.1016/j.rser.2015.05.024
Solimeno, A., Samso, R., Uggeti, E., Sialve, B., Steyer, J. P., Gabarro, A., Garcia, J., 2015. New mechanistic model to simulate microalgae growth. Algal Research 12, 350 - 358. DOI: 10.1016/j.algal.2015.09.008 https://doi.org/10.1016/j.algal.2015.09.008
van Esbroeck, E., 2018. Temperature control of microalgae cultivation under variable conditions. Netherlands MSc Thesis, Wageningen University & Research.
Weatherbit API forecast:, . . https://www.weatherbit.io/
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Revista Iberoamericana de Automática e Informática industrial
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)
Datos de los fondos
-
Ministerio de Ciencia, Innovación y Universidades
Números de la subvención PID2020-112709RB-C21