Calibración ojo a mano de un brazo robótico industrial con cámaras 3D de luz estructurada
DOI:
https://doi.org/10.4995/riai.2021.16054Palabras clave:
Calibración ojo a mano, Robótica industrial, Visión por computador aplicada a la robótica, Sistemas robóticos autónomosResumen
La visión artificial está cobrando cada día más auge en el mundo de la robótica industrial, ya que es necesario realizar tareas cada vez más precisas y autónomas, por lo que se necesita un posicionamiento del robot más exacto. Para ello se precisa del apoyo de un sistema de visión que sea el que preste al robot precisión en su pose, calibrando dicho sistema con respecto al robot. Este trabajo presenta una metodología sencilla para abordar esta forma de calibración, llamada ojo a mano, empleando una cámara 3D de luz estructurada que obtiene la información del mundo real y un brazo robótico industrial de seis ejes. Esto permite utilizar el algoritmo RANSAC para la determinación de los planos, cuya intersección nos da las coordenadas de los puntos,lo que supone una reducción notable de los errores, ya que las coordenadas proceden de planos ajustados a miles de puntos, lo cual hace que el sistema sea más robusto y capaz de obtener una matriz de transformación de las coordenadas de la cámara a la base del robot, que le permitirá abordar cualquier tarea que precise con una precisión eficiente. Se ha realizado el análisis de errores resultante utilizando dos cámaras 3D diferentes: una básica (Kinect 360) y otra industrial (Zivid ONE+ M).Descargas
Citas
Ali, I., Suominen, O., Gotchev, A., Morales, E. R., jun 2019. Methods for simultaneous robot-world-hand-eye calibration: A comparative study. Sensors (Switzerland) 19 (12), 2837. https://doi.org/10.3390/s19122837
Cui, H., Sun, R., Fang, Z., Lou, H., Tian, W., Liao, W., 2020. A novel flexible two-step method for eye-to-hand calibration for robot assembly system. Measurement and Control 53 (9-10), 2020-2029. https://doi.org/10.1177/0020294020964842
de Klerk, E., 2002. Aspects of semidefinite programming interior point algorithms and selected applications. Applied Optimization. https://doi.org/10.1007/b105286
Derpanis, K. G., 2010. Overview of the RANSAC Algorithm. Tech. rep., EECS.
Dias, J., de Almeida, A., Araujo, H., Batista, J., 1991. Improving camera calibration by using multiple frames in hand-eye robotic systems. https://doi.org/10.1109/IROS.1991.174464
Eriksson, T., Hansen, H. N., Gegeckaite, A., 2008. On the use of industrial robots in microfactories. The International Journal of Advanced Manufacturing Technology 38 (5), 479-486. https://doi.org/10.1007/s00170-007-1116-7
Featherstone, R., 2007. Robot dynamics algorithms . https://doi.org/10.1007/978-1-4899-7560-7
Fischler, M., Bolles, R., 1981. https://doi.org/10.1145/358669.358692
Hu, J.-S., Chang, Y.-J., 2013. Automatic Calibration of Hand-Eye-Workspace and Camera Using Hand-Mounted Line Laser. https://doi.org/10.1109/TMECH.2012.2212717
Izadi, S., Kim, D., Hilliges, O., Molyneaux, D., Newcombe, R., Kohli, P., Shotton, J., Hodges, S., Freeman, D., Davison, A., Fitzgibbon, A., 2011. Kinect- Fusion: Real-time 3D Reconstruction and Interaction Using a Moving Depth Camera. In: UIST '11 Proceedings of the 24th annual ACM symposium on User interface software and technology, uist '11 proceedings of the 24th annual acm symposium on user interface software and technology Edition. ACM, pp. 559-568. https://doi.org/10.1145/2047196.2047270
Koide, K., Menegatti, E., 2019. General Hand-Eye Calibration Based on Reprojection Error Minimization. https://doi.org/10.1109/LRA.2019.2893612
Lasi, H., Kemper, H.-G., Feld, D.-I. T., Homann, D.-H. M., 2014. Industry 4.0. Business & Information Systems Engineering 4, 239-242. https://doi.org/10.1007/s12599-014-0334-4
Li, W., Dong, M., Lu, N., Lou, X., Sun, P., 2018. Simultaneous Robot-World and Hand-Eye Calibration without a Calibration Object. https://doi.org/10.3390/s18113949
Liu, X., Madhusudanan, H., Chen, W., Li, D., Ge, J., Ru, C., Sun, Y., 2021. Fast eye-in-hand 3-d scanner-robot calibration for low stitching errors. IEEE Transactions on Industrial Electronics 68 (9), 8422-8432. https://doi.org/10.1109/TIE.2020.3009568
Low, K.-L., 2004. Linear Least-Squares Optimization for Point-to-Plane ICP Surface Registration. Tech. rep., University of North Carolina.
Lu, Y., jun 2017. Industry 4.0: A survey on technologies, applications and open research issues. https://doi.org/10.1016/j.jii.2017.04.005
Lundberg, I., Bjorkman, M., Ogren, P., 2014. Intrinsic camera and hand-eye calibration for a robot vision system using a point marker. https://doi.org/10.1109/HUMANOIDS.2014.7041338
Magnenat-Thalmann, N., 2020. Preface the Visual Computer (vol 36 issues 10-12). https://doi.org/10.1007/s00371-020-01965-8
Munchen, T. U., 2009. HandEyeCalibration. URL: http://campar.in.tum.de/Chair/HandEyeCalibration
Newcombe, R. A., Fitzgibbon, A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J., Kohi, P., Shotton, J., Hodges, S., 2011. KinectFusion: Real-time dense surface mapping and tracking. https://doi.org/10.1109/ISMAR.2011.6092378
Pachtrachai, K., Vasconcelos, F., Chadebecq, F., Allan, M., Hailes, S., Pawar, V., Stoyanov, D., 2018. Adjoint Transformation Algorithm for Hand-Eye Calibration with Applications in Robotic Assisted Surgery. https://doi.org/10.1007/s10439-018-2097-4
Pham, B. T., Tien Bui, D., Prakash, I., 2018. Bagging based Support Vector Machines for spatial prediction of landslides. https://doi.org/10.1007/s12665-018-7268-y
Rusinkiewicz, S., Levoy, M., 2001. Ecient variants of the ICP algorithm. Proceedings of International Conference on 3-D Digital Imaging and Modeling, 3DIM, 145-152. https://doi.org/10.1109/IM.2001.924423
Shiu, Y. C., Ahmad, S., 1989. Calibration of wrist-mounted robotic sensors by solving homogeneous transform equations of the form AX=XB . https://doi.org/10.1109/70.88014
Sorkine-Hornung, O., Rabinovich, M., 2017. Least-Squares Rigid Motion Using SVD. Tech. rep., Department of Computer Science, ETH Zurich. URL: http://www.igl.ethz.ch/projects/ARAP/
Taryudi, Wang, M.-S., 2018. Eye to hand calibration using ANFIS for stereo vision-based object manipulation system. https://doi.org/10.1109/ICASI.2017.7988217
Toan, N. V., Khoi, P. B., 2018. A svd-least-square algorithm for manipulator kinematic calibration based on the product of exponentials formula †. Journal of Mechanical Science and Technology 32 (11), 5401-5409. https://doi.org/10.1007/s12206-018-1038-3
Tsai, R. Y., Lenz, R. K., 1989. A New Technique for Fully Autonomous and Effient 3D Robotics Hand/Eye Calibration. IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 5 (3). https://doi.org/10.1109/70.34770
Uhlig, F., 1992. Review of topics in matrix analysis. https://doi.org/10.1016/0024-3795(92)90075-L
Wang, Z., Fan, J., Jing, F., Deng, S., Zheng, M., Tan, M., 2020. An efficient Calibration Method of Line Structured Light Vision Sensor in Robotic Eyein- Hand System. https://doi.org/10.1109/JSEN.2020.2975538
Werner, D., Al-Hamadi, A., Werner, P., 2014. Truncated Signed Distance Function: Experiments on Voxel Size. https://doi.org/10.1007/978-3-319-11755-3_40
Xu, F., Fan, S., Yang, Q., Zhang, C.,Wang, Y., 2019.Welding robotic hand-eye calibration method based on structured light plane. https://doi.org/10.23919/ChiCC.2019.8865169
Yang, M. Y., F¨orstner, W., 2010. Plane Detection in Point Cloud Data. Tech. rep., Department of Photogrammetry Institute of Geodesy and Geoinformation University of Bonn. URL: http://www.ipb.uni-bonn.de/technicalreports/
Zhang, Z., Zhang, L., Yang, G.-Z., 2017. A computationally ecient method for hand-eye calibration. https://doi.org/10.1007/s11548-017-1646-x
Zhao, Z., Liu, Y., 2009. A hand-eye calibration algorithm based on screw motions. https://doi.org/10.1017/S0263574708004608
Zou, Y., Chen, X., 2018. Hand-eye calibration of arc welding robot and laser vision sensor through semidefinite programming. https://doi.org/10.1108/IR-02-2018-0034
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Revista Iberoamericana de Automática e Informática industrial
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)