Sintonía de controladores PID: un enfoque analítico basado en el moldeo de la función de sensibilidad

R. Vilanova, S. Alcántara, C. Pedret

Resumen

El controlador PID es la opción más común en el ámbito de las aplicaciones de control, siendo la opción predominante en el control de procesos industriales. Entre los métodos analíticos más usuales utilizados para su diseño, el Control por Modelo Interno (IMC) ha ganado una notable aceptación industrial debido a su naturaleza robusta y buenas respuestas ante cambios de consigna. Sin embargo, la aplicación tradicional del IMC da como resultado un bajo rendimiento para el rechazo de perturbaciones en carga para plantas integradoras y/o con largas constantes de tiempo. Este trabajo presenta un método de diseño, basado en IMC, que evita esta deficiencia y está diseñado para funcionar bien en plantas de complejidad moderada para las cuales, por otro lado, el ajuste analítico de un controlador PID es plausible. Por simplicidad, el diseño solo se centra en la función de sensibilidad en lazo cerrado. El enfoque proporciona un ajuste basado en modelo en términos de los compromisos robustez/rendimiento y de servo/regulación. Aunque comúnmente se considera el compromiso robustez/rendimiento, no es tan común tener en cuenta también, por ejemplo, el conflicto entre las perturbaciones de entrada y salida, también conocido como el compromiso servo/regulación. Con el objetivo de proporcionar un enfoque de ajuste unificado, se muestra como la metodología propuesta permite tratar diferentes dinámicas de proceso de manera unificada.


Palabras clave

PID; Control de Procesos; Análisis de Robustez; Rechazo de perturbaciones; Seguimiento

Clasificación por materias

20 Ingeniería de control de procesos e instrumentación

Texto completo:

PDF

Referencias

Alcántara, S., Vilanova, R., Pedret, C., 2013. PID control in terms of robustness/performance and servo/regulator trade-offs: A unifying approach to balanced autotuning. Journal of Process Control 23 (4), 527 - 542. https://doi.org/10.1016/j.jprocont.2013.01.003

Alcántara, S., Pedret, C., Vilanova, R., 2010. On the model matching approach to PID design: Analytical perspective for robust Servo/Regulator tradeoff tuning. Journal of Process Control 20 (5), 596 - 608. https://doi.org/10.1016/j.jprocont.2010.02.011

Alcántara, S., Pedret, C., Vilanova, R., Skogestad, S., 2011a. Generalized Internal Model Control for balancing input/output disturbance response. Industrial & Engineering Chemistry Research 50 (19), 11170-11180. https://doi.org/10.1021/ie200717z

Alcántara, S., Vilanova, R., Pedret, C., 2020. PID Tuning: A Modern Approach via the Weighted Sensitivity Problem (1st ed.). CRC Press. https://doi.org/10.1201/9780429325335-1

Alcántara, S., Vilanova, R., Pedret, C., Skogestad, S., 2012. A look into robustness/performance and servo/regulation issues in PI tuning. In: Proc. of the IFAC Conf. on Advances in PID Control PID'12. https://doi.org/10.3182/20120328-3-IT-3014.00031

Alcántara, S., Zhang, W., Pedret, C., Vilanova, R., Skogestad, S., 2011b. IMC-like analytical H-inf design with S/SP mixed sensitivity consideration: Utility in PID tuning guidance. Journal of Process Control 21 (6), 976 - 985. https://doi.org/10.1016/j.jprocont.2011.04.007

Alfaro, V. M., Vilanova, R., 2013a. Performance and Robustness Considerations for Tuning of Proportional Integral/Proportional Integral Derivative Controllers with Two Input Filters. Industrial & Engineering Chemistry Research 52, 18287-18302. https://doi.org/10.1021/ie4012694

Alfaro, V. M., Vilanova, R., 2013b. Robust tuning of 2DoF five-parameters PID controllers for inverse response controlled processes. Journal of Process Control 23, 453-462. https://doi.org/10.1016/j.jprocont.2013.01.005

Alfaro, V. M., Vilanova, R., September 2013c. Simple robust tuning of 2DoF PID controllers from a performance/robustness trade-off analysis. Asian Journal of Control 15 (5), 1-14. https://doi.org/10.1002/asjc.653

Alfaro, V. M., Vilanova, R., 2016. Model-Reference Robust Tuning of PID Controllers. Springer International Publishing AG, Gewerbestrasse 11, 6330 Cham, Switzerland, ISBN 978-3-319-28213-8.

Alfaro, V. M., Vilanova, R., Méndez, R., Lafuente, J., 2010. Performance/Robustness Tradeoff Analysis of PI/PID Servo and Regulatory Control Systems. In: Proc. of the IEEE International Conference on Industrial Technology. https://doi.org/10.1109/ICIT.2010.5472662

Arrieta, O., Vilanova, R., 2012. Simple servo/regulation proportional-integralderivative (pid) tuning rules for arbitrary ms-based robustness achievement. Industrial & Engineering Chemistry Research 51 (6), 2666-2674. https://doi.org/10.1021/ie201655c

Arrieta, O., Vilanova, R., Rojas, J. D., Meneses, M., 2016. Improved pid controller tuning rules for performance degradation/robustness increase trade-off. Electrical Engineering 98 (3), 233-243. https://doi.org/10.1007/s00202-016-0361-x

Arrieta, O., Visioli, A., Vilanova, R., 2010. PID autotuning for weighted servo/regulation control operation. Journal of Process Control 20 (4), 472 -480. https://doi.org/10.1016/j.jprocont.2010.01.002

Astrom, K., Hagglund, T., 2004. Revisiting the Ziegler-Nichols step response method for PID control. J. Process Control 14, 635-650. https://doi.org/10.1016/j.jprocont.2004.01.002

Astrom, K., Hagglund, T., 2005. Advanced PID control. ISA - The Instrumentation, Systems, and Automation Society.

Chien, I. L., Fruehauf, P. S., 1990. Consider IMC tuning to improve controller performance. Chemical Engineering Progress 86 (10), 33 - 41.

Dehghani, A., Lanzon, A., Anderson, B., 2006. H1 design to generalize internalmodel control. Automatica 42 (11), 1959 - 1968.

Grimholt, C., Skogestad, S., 2012. Optimal PI Control and Verifcation of the SIMC Tuning Rule. In: Proc. of the IFAC Conf. on Advances in PID Control PID'12. https://doi.org/10.3182/20120328-3-IT-3014.00003

Horn, I. G., Arulandu, J. R., Gombas, C. J., VanAntwerp, J. G., Braatz, R. D., 1996. Improved Filter Design in Internal Model Control. Industrial & Engineering Chemistry Research 35 (10), 3437 - 3441. https://doi.org/10.1021/ie9602872

Huba, M., 2012. Setpoint Versus Disturbance Responses of the IPDT Plant. In: Proc. of the IFAC Conf. on Advances in PID Control PID'12. https://doi.org/10.3182/20120328-3-IT-3014.00070

J.Shi, W.S.Lee, 2004. Set Point Response and Disturbance Rejection Tradeoff for Second-Order Plus Dead Time Processes. In: Asian Control Conference.

Kristiansson, B., Lennartson, B., 1998. Optimal PID controllers for unstable and resonant plants. In: Proc. of the IEEE Conference on Decision and Control. pp. 4380-4381.

Kurokawa, R., Sato, T., Vilanova, R., Konishi, Y., 2019. Discrete-time firstorder plus dead-time model-reference trade-off pid control design. Applied Sciences 9 (16). https://doi.org/10.3390/app9163220

Kurokawa, R., Sato, T., Vilanova, R., Konishi, Y., 2020. Design of optimal pid control with a sensitivity function for resonance phenomenon-involved second-order plus dead-time system. Journal of the Franklin Institute 357 (7), 4187-4211. https://doi.org/10.1016/j.jfranklin.2020.03.015

Leva, A., Maggio, M., 2012. Model-Based PI(D) Autotuning. In: PID Control in the Third Millennium. Lessons Learned and New Approaches. Springer. https://doi.org/10.1007/978-1-4471-2425-2_2

Mercader, P., Astrom, K. J., Baños, A., Hagglund, T., 2017a. Robust pid design based on qft and convex?concave optimization. IEEE Transactions on Control Systems Technology 25 (2), 441-452. https://doi.org/10.1109/TCST.2016.2562581

Mercader, P., Baños, A., 2017. A pi tuning rule for integrating plus dead time processes with parametric uncertainty. ISA Transactions 67, 246-255. https://doi.org/10.1016/j.isatra.2017.01.025

Mercader, P., Baños, A., Vilanova, R., 2017b. Robust proportional-integral-derivative design for processes with interval parametric uncertainty. IET Control Theory & Applications 11 (7), 016-1023. https://doi.org/10.1049/iet-cta.2016.1239

Mercader, P., Soltesz, K., Baños, A., 2017c. Robust pid design by chance-constrained optimization. Journal of the Franklin Institute 354 (18), 8217-8231. https://doi.org/10.1016/j.jfranklin.2017.10.017

Meza, G. R., Ferragud, X. B., Saez, J. S., Dur, J. M. H., 2016. Controller Tuning with Evolutionary Multiobjective Optimization: A Holistic Multiobjective Optimization Design Procedure, 1st Edition. Springer Publishing Company, Incorporated.

Middleton, R. H., Graebe, S. F., 1999. Slow stable open-loop poles: to cancel or not to cancel. Automatica 35 (5), 877-886. https://doi.org/10.1016/S0005-1098(98)00220-9

Morari, M., Zafiriou, E., 1989. Robust Process Control. Prentice-Hall International.

Panagopoulos, H., Astrom, K. J., 2000. PID control design and H1 loop shaping. International Journal of Robust and Nonlinear Control 10 (15), 1249-1261. https://doi.org/10.1002/1099-1239(20001230)10:15<1249::AID-RNC514>3.0.CO;2-7

Pedret, C., Vilanova, R., Moreno, R., Serra, I., 2002. A refinement procedure for PID controller tuning. Computers & Chemical Engineering 26 (6), 903- 908. https://doi.org/10.1016/S0098-1354(02)00011-X

Rivera, D. E., Morari, M., Skogestad, S., 1986. Internal model control: PID controller design. Industrial & Engineering Chemistry Process Design and Development 25 (1), 252 - 265. https://doi.org/10.1021/i200032a041

Rodriguez, C., September 2020. Revisiting the simplified imc tuning rules for low-order controllers: Novel 2dof feedback controller. IET Control Theory & Applications 14, 1700-1710(10). https://doi.org/10.1049/iet-cta.2019.0821

Ruscio, D. D., 2010. On Tuning PI Controllers for Integrating Plus Time Delay Systems. Modeling, Identification and Control 31 (4), 145 - 164. https://doi.org/10.4173/mic.2010.4.3

Samad, T., Feb 2017. A survey on industry impact and challenges thereof [technical activities]. CSM 37 (1), 17-18. https://doi.org/10.1109/MCS.2016.2621438

Sanchez, H. S., Padula, F., Visioli, A., Vilanova, R., 2017a. Tuning rules for robust fopid controllers based on multi-objective optimization with fopdt models. ISA Transactions 66, 344-361. https://doi.org/10.1016/j.isatra.2016.09.021

Sanchez, H. S., Visioli, A., Vilanova, R., 2017b. Optimal nash tuning rules for robust pid controllers. Journal of the Franklin Institute 354 (10), 3945-3970.https://doi.org/10.1016/j.jfranklin.2017.03.012

Sato, T., Hayashi, I., Horibe, Y., Vilanova, R., Konishi, Y., 2019. Optimal robust pid control for first- and second-order plus dead-time processes. Applied Sciences 9 (9). https://doi.org/10.3390/app9091934

Sato, T., Tajika, H., Vilanova, R., Konishi, Y., 2018. Adaptive pid control system with assigned robust stability. IEEJ Transactions on Electrical and Electronic Engineering 13 (8), 1169-1181. https://doi.org/10.1002/tee.22680

Shamsuzzoha, M., Lee, M., 2007. IMC-PID Controller Design for Improved Disturbance Rejection of Time-Delayed Processes. Industrial & Engineering Chemistry Research 46 (7), 2077 - 2091. https://doi.org/10.1021/ie0612360

Shamsuzzohaa, M., Skogestad, S., 2010. The setpoint overshoot method: A simple and fast closed-loop approach for PID tuning. Journal of Process Control 20 (10), 1220 - 1234. https://doi.org/10.1016/j.jprocont.2010.08.003

Skogestad, S., 2003. Simple analytic rules for model reduction and PID controller tuning. J. Process Control 13, 291-309. https://doi.org/10.1016/S0959-1524(02)00062-8

Skogestad, S., Grimholt, C., 2012. PID Tuning for Smooth Control. In: PID Control in the Third Millennium. Lessons Learned and New Approaches. Springer.

Skogestad, S., Postlethwaite, I., 2005. Multivariable Feedback Control. Wiley.

Smuts, J. F., 2011. Process Control for Practitioners: How to Tune PID Controllers and Optimize Control Loops. OptiControls.

Vilanova, R., 2008. IMC based Robust PID design: Tuning guidelines and automàtic tuning. Journal of Process Control 18, 61-70. https://doi.org/10.1016/j.jprocont.2007.05.004

Vilanova, R., Arrieta, O., 2007. PID design for improved disturbance attenuation: min max Sensitivity matching approach. IAENG International Journal of Applied Mathematics 37 (1).

Vilanova, R., Arrieta, O., Ponsa, P., 2018. Robust pi/pid controllers for load disturbance based on direct synthesis. ISA Transactions 81, 177-196. https://doi.org/10.1016/j.isatra.2018.07.040

Vilanova, R., Visioli, A., 2012. PID Control in the Third Millenium - Lessons Learned and New Approaches. Springer-Verlag London Limited. https://doi.org/10.1007/978-1-4471-2425-2

Visioli, A., 2001. Optimal tuning of PID controllers for integral and unstable processes. IEE Proceedings. Part D 148 (2), 180 - 184. https://doi.org/10.1049/ip-cta:20010197

Zhuang, M., Atherton, D. P., 1993. Automatic tuning of optimum PID controllers. IEE Proc. Part D 140 (3), 216-224. https://doi.org/10.1049/ip-d.1993.0030

Ziegler, J. G., Nichols, N. B., 1942. Optimum settings for automatic controllers. Trans. Am. Soc. Mech. Eng. 64, 759-768.

Abstract Views

780
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912