Control mixto para el seguimiento de trayectoria en buques marinos
DOI:
https://doi.org/10.4995/riai.2021.15027Palabras clave:
Control adaptable, algebra lineal, seguimiento de trayectoria, buques marinos, control no linealResumen
Este trabajo muestra el diseño de un controlador adaptable para un buque marino; la estrategia de control que se propone es la aplicación de un controlador basado en álgebra lineal para la cinemática y una técnica de control adaptable para la parte dinámica del buque. El controlador basado en álgebra lineal (LABC) para cinemática recibe las referencias de posición deseadas y esto genera otro par de velocidad de referencia para el controlador adaptable (dinámico). El objetivo principal de la aplicación de la técnica de control adaptable se presenta en el caso de que la masa del buque varíe con su trayectoria (por ejemplo, buque pesquero, buque de reabastecimiento de combustible, etc.) donde el controlador adaptable ajusta sus parámetros mediante la ley de adaptación, que a su vez genera una acción de control que compensa las variaciones dinámicas del buque. Además, este trabajo presenta el análisis de estabilidad y la ley de ajuste adaptable basada en la teoría de Lyapunov. Los resultados de simulación muestran que el sistema puede seguir las señales de referencia con un error muy bajo aún en presencia de incertidumbre.Descargas
Citas
Cui R, Chen L, Yang C, Chen M. "Extended state observer-based integral sliding mode control for an underwater robot with unknown disturbances and uncertain nonlinearities". IEEE Transactions on Industrial Electronics 2017; 64(8): 6785-6795. https://doi.org/10.1109/TIE.2017.2694410
Dai SL, He S, Lin H. "Transverse function control with prescribed performance guarantees for underactuated marine surface vehicles". International Journal of Robust and Nonlinear Control 2019; 29(5): 1577-1596. https://doi.org/10.1002/rnc.4453
Do K, Jiang ZP, Pan J. "Universal controllers for stabilization and tracking of underactuated ships". Systems & Control Letters 2002; 47(4): 299-317. https://doi.org/10.1016/S0167-6911(02)00214-1
Fossen T. "Marine control systems. Marine cybernetics". Trondhiem, Norway 2002.
Fu M,Wang T,Wang C. "Adaptive Neural-Based Finite-Time Trajectory Tracking Control for Underactuated Marine Surface Vessels With Position Error Constraint".IEEE Access 2019; 7: 16309-16322. https://doi.org/10.1109/ACCESS.2019.2895053
Ghommam J, Mnif F, Derbel N. "Global stabilization and tracking control of underactuated surface vessels". IET control theory & applications 2010; 4(1): 71-88. https://doi.org/10.1049/iet-cta.2008.0131
Ghommam J, Mnif F, Benali A, Derbel N. "Asymptotic backstepping stabilization of an underactuated surface vessel". IEEE Transactions on Control Systems Technology 2006; 14(6): 1150-1157. https://doi.org/10.1109/TCST.2006.880220
He W, Yin Z, Sun C. "Adaptive neural network control of a marine vessel with constraints using the asymmetric barrier Lyapunov function".IEEE transactions on cybernetics 2016; 47(7): 1641-1651. https://doi.org/10.1109/TCYB.2016.2554621
Hu X, Du J, Zhu G, Sun Y. "Robust adaptive NN control of dynamically positioned vessels under input constraints". Neurocomputing 2018; 318: 201-212. https://doi.org/10.1016/j.neucom.2018.08.056
Liao Yl, Wan L, Zhuang Jy. "Backstepping dynamical sliding mode control method for the path following of the underactuated surface vessel". Procedia Engineering 2011; 15: 256-263. https://doi.org/10.1016/j.proeng.2011.08.051
Martins, F. N., Celeste, W. C., Carelli, R., Sarcinelli-Filho, M., & BastosFilho, T. F. (2008). An adaptive dynamic controller for autonomous mobile robot trajectory tracking. Control Engineering Practice, 16(11), 1354-1363. https://doi.org/10.1016/j.conengprac.2008.03.004
Nie J, Lin X. "Robust Nonlinear Path Following Control of UnderactuatedMSV With Time-Varying Sideslip Compensation in the Presence of Actuator Saturation and Error Constraint". IEEE Access 2018; 6: 71906-71917. https://doi.org/10.1109/ACCESS.2018.2881513
Scaglia, Gustavo; Serrano, Emanuel; Albertos, Pedro (2020). Control de Trayectorias Basado en Algebra Lineal. Revista Iberoamericana de Automática e Informática industrial, [S.l.], ago. 2020. ISSN 1697-7920. Disponible en: https://polipapers.upv.es/index.php/RIAI/article/view/13584. https://doi.org/10.4995/riai.2020.13584
Scaglia Gustavo, Serrano Mario Emanuel, Albertos Pedro (2020). "Linear Algebra Based Controller - Design and Applications". Publisher: Springer International Publishing. eBook ISBN 978-3-030-42818-1. Hardcover ISBN 978-3-030-42817-4. DOI 10.1007/978-3-030-42818-1.
Scaglia, G., Mut, V., Rosales, A., Quintero, O., "Tracking Control of a Mobile Robot using Linear Interpolation", Proceeding of the 3rd International Conference on Integrated Modeling and Analysis in Applied Control and Automation, IMAACA 2007. vol. 1, pp. 11-15, ISBN: 978-2-9520712-7-7 February 8-10, 2007
Serrano M.E., Scaglia G.J.E., Auat Cheein F., Mut V. and Ortiz O.A. (2015).Trajectory-tracking controller design with constraints in the control signals: a case study in mobile robots. Robotica, 33, pp 2186-2203, diciembre 2015. https://doi.org/10.1017/S0263574714001325
Serrano ME, Godoy SA, Gandolfo D, Mut V, Scaglia G. "Nonlinear Trajectory Tracking Control for Marine Vessels with Additive Uncertainties". Information Technology And Control 2018; 47(1): 118-130. https://doi.org/10.5755/j01.itc.47.1.17782
Tee KP, Ge SS. "Control of fully actuated ocean surface vessels using a class of feedforward approximators". IEEE Transactions on Control Systems Technology 2006; 14(4): 750-756. https://doi.org/10.1109/TCST.2006.872507
Van M. "Adaptive neural integral sliding-mode control for tracking control of fully actuated uncertain surface vessels". International Journal of Robust and Nonlinear Control 2019; 29(5): 1537-1557. https://doi.org/10.1002/rnc.4455
Wang N, Su S F,Yin J, Zheng Z, Er MJ. "Global asymptotic model-free trajectory-independent tracking control of an uncertain marine vehicle: An adaptive universe-based fuzzy control approach". Transactions on Fuzzy Systems 2017; 26(3):1613-1625. https://doi.org/10.1109/TFUZZ.2017.2737405
Wang, D., Mu, C., & Liu, D. (2017, May). Neural network adaptive critic control with disturbance rejection. In 2017 29th Chinese Control And Decision Conference (CCDC) (pp. 202-207). IEEE. https://doi.org/10.1109/CCDC.2017.7978092
Wondergem M, Lefeber E, Pettersen KY, Nijmeijer H. "Output feedback tracking of ships". IEEE Transactions on Control Systems Technology 2010; 19(2): 442-448. https://doi.org/10.1109/TCST.2010.2045654
Xu Z, Ge SS, Hu C, Hu J. "Adaptive Learning Based Tracking Control of Marine Vessels with Prescribed Performance". Mathematical Problems in Engineering 2018; 2018. https://doi.org/10.1155/2018/2595721
Yang Y, Zhou C, Ren J. "Model reference adaptive robust fuzzy control for ship steering autopilot with uncertain nonlinear systems". Applied Soft Computing 2003; 3(4): 305-316. https://doi.org/10.1016/j.asoc.2003.05.001
Yin Z, He W, Yang C. "Tracking control of a marine surface vessel with fullstate constraints". International Journal of Systems Science 2017; 48(3): 535-546. https://doi.org/10.1080/00207721.2016.1193255
Yu Y, Guo C, Yu H. "Finite-time predictor line-of-sight-based adaptive neural network path following for unmanned surface vessels with unknown dynamics and input saturation". International Journal of Advanced Robotic Systems 2018; 15(6): 1729881418814699. https://doi.org/10.1177/1729881418814699
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)