Sistema de control de posición mediante rechazo activo de perturbaciones para sistemas ópticos láser

Autores/as

DOI:

https://doi.org/10.4995/riai.2021.14852

Palabras clave:

Sistema de estabilización de haz láser, Control por Rechazo Activo a Perturbaciones, Observador Lineal de Estado Extendido, Estabilidad Entrada a Estado (ISS)

Resumen

En este trabajo se presenta de manera pragmática un esquema de control por rechazo activo a perturbaciones para un sistema de direccionamiento y estabilización de haz láser. Primeramente es diseñado un Observador Lineal de Estado Extendido, el cual permite estimar las perturbaciones externas e incertidumbres en el modelo, así como la velocidad de desplazamiento transversal del haz. Posteriormente, se propone una ley de control, la cual contiene términos de retroalimentación y precompensación, permitiendo realizar tareas de regulación y seguimiento. Mediante un análisis de estabilidad en el sentido entrada a estado, se muestra que el sistema en lazo cerrado, planta-observador-controlador, es robustamente estable, cuando la entrada es la perturbación total y el estado es el error de posición del haz. Dicho análisis presenta nuevas perspectivas en una técnica ahora madura. Los resultados experimentales muestran el funcionamiento del esquema de control y mediante la norma L2 y la Integral del Error Cuadrático se mide el desempeño en lazo cerrado, el cual es comparado con tres controles generalmente usados en este tipo de sistemas: PID, control por retroalimentación de estados con observador y regulador lineal cuadrático gaussiano.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

José Fermi Guerrero-Castellanos, Benemérita Universidad Autónoma de Puebla

Facultad de Ciencias de la Electrónica

L. L. González-Romeo, Benemérita Universidad Autónoma de Puebla

Facultad de Ciencias de la Electrónica

Citas

Al-Alwan, A., Guo, X., N'Doye, I., Laleg-Kirati, T., Aug 2017. Laser beam pointing and stabilization by fractional-order PID control: Tuning rule and experiments. In: Proc. of the 2017 IEEE Conference on Control Technology and Applications (CCTA). https://doi.org/10.1109/CCTA.2017.8062699

Alizadegan, A., Zhao, P., Nagamune, R., Chiao, M., 2018. Robust H∞ control of miniaturized optical image stabilizers against product variabilities. Con- trol Engineering Practice 80, 70 - 82. https://doi.org/10.1016/j.conengprac.2018.08.006

Åstrom, K. J., Murray, R. M., 2010. Feedback systems: an introduction for scientists and engineers. Princeton university press.

Baronti, F., Lazzeri, A., Lenzi, F., Roncella, R., Saletti, R., Saponara, S., 2009. Voice coil actuators: From model and simulation to automotive application. In: 2009 35th Annual Conference of IEEE Industrial Electronics. pp. 1805- 1810. https://doi.org/10.1109/IECON.2009.5414837

Boyd, S. P., Barratt, C. H., 1991. Linear controller design: limits of performance. Prentice-Hall Englewood Cliffs, NJ.

Carreno-Zagarra, J., Guzman, J., Moreno, J., Villamizar, R., 2019. Linear active disturbance rejection control for a raceway photobioreactor. Control Engineering Practice 85, 271-279. https://doi.org/10.1016/j.conengprac.2019.02.007

Clark, R., 1961. Integral of the error squared as a performance index for automatic control systems. Transactions of the American Institute of Electrical Engineers, Part II: Applications and Industry 79 (6), 467-471. https://doi.org/10.1109/TAI.1961.6371690

Deng, J., Xue, W., Zhou, X., Mao, Y., 2020. On disturbance rejection control for inertial stabilization of long-distance laser positioning with movable platform. Measurement and Control 53 (7-8), 1203-1217. https://doi.org/10.1177/0020294020935492

Freidovich, L. B., Khalil, H. K., 2008. Performance recovery of feedback- linearization-based designs. IEEE Transactions on automatic control 53 (10), 2324-2334. https://doi.org/10.1109/TAC.2008.2006821

Guerrero-Castellanos, J., Rifai, H., Arnez-Paniagua, V., Linares-Flores, J., Saynes-Torres, L., Mohammed, S., 2018. Robust active disturbance rejection control via control Lyapunov functions: Application to Actuated-Ank foot-Orthosis. Control Engineering Practice 80, 49 - 60. https://doi.org/10.1016/j.conengprac.2018.08.008

Guo, B.-Z., Zhao, Z.-L., 2016. Active disturbance rejection control for nonlinear systems: An introduction. John Wiley & Sons.

https://doi.org/10.1002/9781119239932

Han, J., 2009. From PID to active disturbance rejection control. Transactions on Industry Electronics 56 (3), 900-906. https://doi.org/10.1109/TIE.2008.2011621

Hernández-Méndez, A., Linares-Flores, J., Sira-Ram ́ırez, H., Guerrero- Castellanos, J., Mino-Aguilar, G., 2017. A backstepping approach to decentralized active disturbance rejection control of interacting boost converters. Transactions on Industry Applications 53 (4), 4063-4072. https://doi.org/10.1109/TIA.2017.2683441

Kia, S. S., Van Scoy, B., Cortes, J., Freeman, R. A., Lynch, K. M., Martinez, S., June 2019. Tutorial on dynamic average consensus: The problem, its applications, and the algorithms. IEEE Control Systems Magazine 39 (3), 40-72. https://doi.org/10.1109/MCS.2019.2900783

Kim, B.-S., S.Gibson, T-C. Tsao, June 2004. Adaptive control of a tilt mirror for laser beam steering. In: Proc. of the 2004 American Control Conference. https://doi.org/10.23919/ACC.2004.1384437

Kim, Y., Keel, L., Bhattacharyya, S., 2003. Transient response control via characteristic ratio assignment. IEEE Transactions on Automatic Control 48 (12), 2238-2244. https://doi.org/10.1109/TAC.2003.820153

Konadu, K. A., Yi, S., 2011. Design of controllers for a laser beam stabilizer using pid and observer-based state feedback control. In: 2011 ASME Early Career Technical Conference, ASME ECTC. Vol. 10. pp. 91-98.

Konadu, K. A., Yi, S., Choi, W., Abu-Lebdeh, T., 2013. Robust positioning of laser beams using proportional integral derivative and based observer-feedback control. American Journal of Applied Sciences 10 (4), 374. https://doi.org/10.3844/ajassp.2013.374.387

Landolsi, T., Dhaouadi, R., Aldabbas, O., 2011. Beam-stabilized optical switch using a voice-coil motor actuator. Journal of the Franklin Institute 348 (1), 1-11. https://doi.org/10.1016/j.jfranklin.2009.02.004

Martinez, J., Sename, O., Voda, A., 2009. Modeling and robust control of Bluray disc servo-mechanisms. Mechatronics 19 (5), 715 - 725. https://doi.org/10.1016/j.mechatronics.2009.02.006

Pérez-Arancibia, N., Chen, N., Gibson, J., Tsao, T.-C., 2006. Variable-order adaptive control of a microelectromechanical steering mirror for suppression of laser beam jitter. Optical Engineering 45 (10), 1 - 12. https://doi.org/10.1117/1.2363189

Pérez-Arancibia, N., Gibson, J., Tsao, T.-C., June 2009. Frequency-weighted minimum-variance adaptive control of laser beam jitter. IEEE/ASME Transactions on Mechatronics 14 (3), 337-348. https://doi.org/10.1109/TMECH.2009.2017532

Quanser, 2010. Laser beam stabilization instructor manual. Quanser Speciality Experiment Series: LBS Laboratory Workbook.

Quanser, 2021. Qpide data acquisition device. URL: https://www.quanser.com/products/

Sala, A., Pitarch, J. L., 2016. Optimisation of transient and ultimate inescapable sets with polynomial boundaries for nonlinear systems. Automatica 73, 82-87. https://doi.org/10.1016/j.automatica.2016.06.017

Sira-Ramírez, H., Hernández-Méndez, A., Linares-Flores, J., Luviano-Juarez, A., 2016. Robust flat filtering dsp based control of the boost converter. Control Theory and Technology 14 (3), 224-236. https://doi.org/10.1007/s11768-016-6025-6

Sira-Ramírez, H., Linares-Flores, J., Luviano-Juarez, A., Cortés-Romero, J., 2015. Ultramodelos globales y el control por rechazo activo de perturbaciones en sistemas no lineales diferencialmente planos. Revista Iberoamericana de Automática e Informática Industrial (RIAI) 12 (2), 133 - 144. https://doi.org/10.1016/j.riai.2015.02.001

Sira-Ramírez, H., Luviano-Juarez, A., Cortés-Romero, J., 2011. Control lineal robusto de sistemas no lineales diferencialmente planos. Revista Iberoamericana de Automática e Informática Industrial RIAI 8 (1), 14-28. https://doi.org/10.1016/S1697-7912(11)70004-8

Sira-Ramírez, H., Luviano-Juarez, A., Ramırez-Neria, M., Zurita-Bustamante, E., 2017. Active Disturbance Rejection Control of Dynamic Systems. Butterworth-Heinemann.

Sontag, E. D., 2008. Input to State Stability: Basic Concepts and Results. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 163-220. https://doi.org/10.1007/978-3-540-77653-6_3

Sontag, E. D., Wang, Y., 1995. On characterizations of the input-to-state stability property. Systems and Control Letters 24 (5), 351-360. https://doi.org/10.1016/0167-6911(94)00050-6

Tran, M.-S., Hwang, S.-J., 2020. Design and simulation of electromagnetic linear actuators for jet dispensers. Applied Sciences 10 (5). https://doi.org/10.3390/app10051653

Yue, Y., Song, Z., Aug 2015. An integral resonant control scheme for a laser beam stabilization system. In: Proc. of the 2015 IEEE International Conference on Information and Automation. https://doi.org/10.1109/ICInfA.2015.7279656

Descargas

Publicado

17-12-2021

Cómo citar

Guerrero-Castellanos, J. F. y González-Romeo, L. L. (2021) «Sistema de control de posición mediante rechazo activo de perturbaciones para sistemas ópticos láser», Revista Iberoamericana de Automática e Informática industrial, 19(1), pp. 61–73. doi: 10.4995/riai.2021.14852.

Número

Sección

Artículos