Control mediante rechazo activo de perturbaciones de la temperatura de un módulo termoeléctrico

Autores/as

DOI:

https://doi.org/10.4995/riai.2021.14728

Palabras clave:

Módulo termoeléctrico, rechazo activo de perturbaciones, observador GPI

Resumen

Este artículo presenta una aproximación mediante rechazo activo de perturbaciones para controlar, de manera indirecta, la temperatura de la cara fría de un módulo termoeléctrico alimentado por un convertidor CD-CD tipo reductor. La dinámica del módulo, es vista como una perturbación de naturaleza desconocida y variante en el tiempo, del voltaje de salida del convertidor. Dicha perturbación es estimada mediante un observador de tipo proporcional integral generalizado, el cual en combinación con el controlador permite regular la temperatura en la cara fría del módulo termoeléctrico a un valor constante deseado. El observador diseñado estima de manera simultánea el voltaje de salida del convertidor reductor y la perturbación exógena en un esquema de cancelación en línea, conocido como control mediante rechazo activo de perturbaciones. Para propósitos de comparación, se diseñan un controlador de tipo proporcional integral y un regulador cuadrático lineal, sobre la base de una linealización aproximada del modelo dinámico combinado del convertidor reductor y del módulo. Los resultados  experimentales que se obtuvieron mediante un prototipo experimental, permiten mostrar la efectividad de la técnica de control propuesta para este tipo de dispositivos termoeléctricos.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Jorge Luis Barahona-Avalos, Universidad Tecnológica de la Mixteca

Profesor-investigador, Instituto de Electrónica y Mecatrónica (IEM)

José Antonio Juárez-Abad, Universidad Tecnológica de la Mixteca

Profesor-investigador, Instituto de Electrónica y Mecatrónica (IEM)

G. S. Galván-Cruz, Universidad Tecnológica de la Mixteca

Egresado de Ingenieria en Mecatrónica, Instituto de Electrónica y Mecatrónica (IEM)

Jesús Linares-Flores, Universidad Tecnológica de la Mixteca

Profesor-investigador, Instituto de Electrónica y Mecatrónica (IEM)

Citas

Casano, G., Piva, S., 2016. Peltier cells cooling system for switch mode power supply. In: 2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC). IEEE, pp. 279-282. https://doi.org/10.1109/THERMINIC.2016.7749066

Castillo, A., García, P., Sanz, R., Albertos, P., 2018. Enhanced extended state observer-based control for systems with mismatched uncertainties and disturbances. ISA transactions 73, 1-10. https://doi.org/10.1016/j.isatra.2017.12.005

Celil Yavuz, S. Y., Kaya, M., 2013. The design of computer controlled cold and hot therapy device with thermoelectric module. American Scientific Publishers,3, 221-226. https://doi.org/10.1166/jmihi.2013.1159

Chavez, J., Ortega, J., Salazar, J., Turo, A., Garcia, M. J., 2000. Spice model of thermoelectric elements including thermal effects. In: Proceedings of the 17th IEEE Instrumentation and Measurement Technology Conference [Cat.No. 00CH37066]. Vol. 2. IEEE, pp. 1019-1023.

Chen, C., Wang, Y., Li, S., 2017. Generalized proportional integral observer based composite control method for robotic thermal tactile sensor with disturbances. International Journal of Advanced Robotic Systems. https://doi.org/10.1177/1729881417710033

Deng, M., Wen, S., Inoue, A., 2011. Operator-based robust nonlinear control for a peltier actuated process. Measurement and Control 44 (4), 116-120. https://doi.org/10.1177/002029401104400404

Dubreuil, V., Osintsev, A. V., 2019. Designing multiple pid controllers based on an fpga for controlling the temperature of tem-cell surfaces. In: 2019, International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON). IEEE, pp. 0194-0198. https://doi.org/10.1109/SIBIRCON48586.2019.8958396

Gao, Z., 2010. On disturbance rejection paradigm in control engineering. In: Proceedings of the 29th Chinese Control Conference. pp. 6071-6076.

Guo, L., Cao, S., 2014. Anti-disturbance control theory for systems with multiple disturbances: A survey. ISA transactions 53 (4), 846-849. https://doi.org/10.1016/j.isatra.2013.10.005

Han, J.-Q., 1999. Nonlinear design methods for control systems. IFAC Proceedings Volumes 32 (2), 1531-1536. https://doi.org/10.1016/S1474-6670(17)56259-X

Jahangir, M., Rehman, M. A. U., Awan, A. B., Ali, R. H., 2019. Design and testing of cooling jacket using peltier plate. In: 2019 International Conference on Applied and Engineering Mathematics (ICAEM). IEEE, pp. 191-196. https://doi.org/10.1109/ICAEM.2019.8853654

Jianzhong, Z., Hua, Z., Song, W. T., Zhaonan, J., 1997. A method of diode parallel to improve the reliability of the thermoelectric coolers. 16th International Conference on Thermoelectrics, 690-692.

Li, C., Jiao, D., Jia, J., Guo, F.,Wang, J., Nov 2014. Thermoelectric cooling for power electronics circuits: Modeling and active temperature control. IEEE Transactions on Industry Applications 50 (6), 3995-4005. https://doi.org/10.1109/TIA.2014.2319576

Li, S., Yang, J., Chen, W.-H., Chen, X., 2011. Generalized extended state observer based control for systems with mismatched uncertainties. IEEE Transactions on Industrial Electronics 59 (12), 4792-4802. https://doi.org/10.1109/TIE.2011.2182011

Lineykin, S., Ben-Yaakov, S., 2005. Analysis of thermoelectric coolers by a spice-compatible equivalent-circuit model. IEEE Power Electronics Letters, 3 (2), 63-66. https://doi.org/10.1109/LPEL.2005.846822

Lineykin, S., Ben-Yaakov, S., 2007. Modeling and analysis of thermoelectric modules. IEEE Transactions on Industry Applications 43, 505-512. https://doi.org/10.1109/TIA.2006.889813

Mardini-Bovea, J., Torres-Díaz, G., Sabau, M., De-la Hoz-Franco, E., Niño Moreno, J., Pacheco-Torres, P. J., 2019. A review to refrigeration with thermoelectric energy based on the peltier effect. Dyna 86 (208), 9-18. https://doi.org/10.15446/dyna.v86n208.72589

Marquez, H. J., 2003. Nonlinear control systems. John Wiley & Sons. Martinez A., A. D., P., A., 2016. Thermoelectric self-cooling for power electronics: Increasing the cooling power. Energy, Elsevier 112, 1-7. https://doi.org/10.1016/j.energy.2016.06.007

Marusa, L., Milanovic, M., Valderrama-Blavi, H., 2015. Evaluating a switched capacitor-boost converter (sc-bc) for energy harvesting in a peltier-cells thermoelectric system. In: 2015 International Conference on Electrical Drives and Power Electronics (EDPE). IEEE, pp. 227-234. https://doi.org/10.1109/EDPE.2015.7325298

Mironova, A., Haus, B., Mercorelli, P., 2018. Combination of a reduced order state observer and an extended kalman filter for peltier cells. In: 2018 19th International Carpathian Control Conference (ICCC). IEEE, pp. 211-216. https://doi.org/10.1109/CarpathianCC.2018.8399630

Mironova, A., Haus, B., Zedler, A., Mercorelli, P., 2020. Extended kalman filter for temperature estimation and control of peltier cells in a novel industrial milling process. IEEE Transactions on Industry Applications 56 (2), 1670-1678. https://doi.org/10.1109/TIA.2020.2965058

Najafi, H., Woodbury, K. A., 2013. Optimization of a cooling system based on peltier effect for photovoltaic cells. Solar Energy 91, 52 - 160. https://doi.org/10.1016/j.solener.2013.01.026

Parvathy, R., Daniel, A. E., 2013. A survey on active disturbance rejection control. In: 2013 International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s). IEEE, pp. 330-335. https://doi.org/10.1109/iMac4s.2013.6526432

Qi, Y., Li, Z., Zhang, J., 2003. Peltier temperature controlled box for test circuit board. In: Proceedings ICT'03. 22nd International Conference on Thermoelectrics (IEEE Cat. No. 03TH8726). IEEE, pp. 644-647.

Rowe, D., 2006. Thermoelectrics handbook: macro to nano. CRC Press. Sontag, E. D., Wang, Y., 1995. On characterizations of the input-to-state stability property. Systems and Control letters 24 (5), 351-360. https://doi.org/10.1016/0167-6911(94)00050-6

Sira-Ramirez, H., Luviano-Juarez, A., Cortés-Romero, J., 2011. Control lineal robusto de sistemas no lineales diferencialmente planos. Revista Iberoamericana de Automatica e Informática Industrial RIAI 8 (1), 14-28. https://doi.org/10.1016/S1697-7912(11)70004-8

Sira-Ramirez, H., Oliver-Salazar, M. A., 2012. On the robust control of buckconverter dc-motor combinations. IEEE Transactions on Power Electronics 28 (8), 3912-3922. https://doi.org/10.1109/TPEL.2012.2227806

Sontag, E. D., Wang, Y., 1995. On characterizations of the input-to-state stability property. Systems and Control letters 24 (5), 351-360. https://doi.org/10.1016/0167-6911(94)00050-6

Spengler, A., Ferreira, E., Siqueira Dias, J. A., 01 2011. A low power, battery operated precision portable thermal chamber with double thermoelectric module. International Journal of Circuits, Systems and Signal Processing 5, 627-634.

Thakor, M. D., Hadia, S., Kumar, A., 2015. Precise temperature control through thermoelectric cooler with pid controller. In: 2015 International Conference on Communications and Signal Processing (ICCSP). IEEE, pp. 1118-1122. https://doi.org/10.1109/ICCSP.2015.7322677

Descargas

Publicado

17-12-2021

Cómo citar

Barahona-Avalos, J. L., Juárez-Abad, J. A., Galván-Cruz, G. S. y Linares-Flores, J. (2021) «Control mediante rechazo activo de perturbaciones de la temperatura de un módulo termoeléctrico», Revista Iberoamericana de Automática e Informática industrial, 19(1), pp. 48–60. doi: 10.4995/riai.2021.14728.

Número

Sección

Artículos