Estrategia de modulación para minimizar la potencia reactiva en el enlace de CA de convertidores CC-CC de tres puertos aislados

M. Troviano, L. E. Piris-Botalla, G.G. Oggier

Resumen

El convertidor CC-CC de tres puertos aislados es de interés para los sistemas de almacenamiento de energía híbridos por su capacidad para controlar los flujos de energía de manera bidireccional, aumentar y disminuir la tensión y la operación con conmutación suave. El control convencional del flujo de energía se realiza aplicando un desfase entre las tensiones a bornes del transformador, lo que puede generar una elevada potencia reactiva debida a la corriente de circulación en el enlace de CA del convertidor, consiguiéndose rendimientos elevados sólo en un rango de operación limitado. Para aumentar el rendimiento en todo el rango de operación, este trabajo propone una estrategia de modulación que extiende la región de conmutación suave y minimiza la potencia reactiva. Esta estrategia aplica un ancho de pulso en el puerto de mayor tensión de CC, manteniendo la modulación tradicional de onda cuadrada en el puerto opuesto. Para validar la estrategia, se presentan resultados para diferentes escenarios de transferencia de potencia.


Palabras clave

Convertidor de Tres Puentes Activos (TAB); Potencia Reactiva; Enlace-CA; Estrategia de Modulación; Conmutación Suave

Texto completo:

PDF

Referencias

Bai, H., Mi, C., 2008. Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge dc-dc converters using novel dual-phase-shift control. IEEE Transactions on Power Electronics 23 (6), 2905-2914. https://doi.org/10.1109/TPEL.2008.2005103

Biswas, I., Kastha, D., Bajpai, P., 2021. Small signal modeling and decoupled controller design for a triple active bridge multiport dc-dc converter. IEEE Transactions on Power Electronics 36 (2), 1856-1869. https://doi.org/10.1109/TPEL.2020.3006782

Chien, L.-J., Chen, C.-C., Chen, J.-F., Hsieh, Y.-P., 2014. Novel three-port converter with high-voltage gain. IEEE Transactions on Power Electronics 29 (9), 4693-4703. https://doi.org/10.1109/TPEL.2013.2285477

Choi, M.-E., Kim, S.-W., Seo, S.-W., 2012. Energy management optimization in a battery/supercapacitor hybrid energy storage system. IEEE Transactions on Smart Grid 3 (1), 463-472. https://doi.org/10.1109/TSG.2011.2164816

De Doncker, R., D.M., D., M.H., K., 1991. A threephase soft-switched highpowerdensity dc/dc converter for high-power applications. IEEE Transactions on Industry Applications 27 (1), 63 -73. https://doi.org/10.1109/28.67533

Duarte, J., Hendrix, M., Simoes, M., 2007. Three-port bidirectional converter for hybrid fuel cell systems. IEEE Transactions on Power Electronics 22 (2), 480 -487. https://doi.org/10.1109/TPEL.2006.889928

Hajiaghasi, S., Salemnia, A., Hamzeh, M., 2019. Hybrid energy storage system for microgids applications: A review. Journal of Energy Storage 21, 543-570. https://doi.org/10.1016/j.est.2018.12.017

Kim, S. Y., Song, H.-S., Nam, K., 2012. Idling port isolation control of threeport bidirectional converter for evs. IEEE Transactions on Power Electronics 27 (5), 2495 -2506. https://doi.org/10.1109/TPEL.2011.2172225

McDonough, M., 2015. Integration of inductively coupled power transfer and hybrid energy storage system: A multiport power electronics interface for battery-powered electric vehicles. IEEE Transactions on Power Electronics 30 (11), 6423-6433. https://doi.org/10.1109/TPEL.2015.2422300

Mendis, N., Muttaqi, K., Perera, S., 2014. Management of battery-supercapacitor hybrid energy storage and synchronous condenser for isolated operation of pmsg based variable-speed wind turbine generating systems. IEEE Transactions on Smart Grid 5 (2), 944-953. https://doi.org/10.1109/TSG.2013.2287874

Nguyen, D., Fujita, G., Ta, M. C., 2017. A new soft-switching strategy for three-port converter to be applied in ev application. In: 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia). pp. 1126-1131. https://doi.org/10.1109/IFEEC.2017.7992199

Oggier, G., Garcia, G., Oliva, A., 2009. Switching control strategy to minimize dual active bridge converter losses. IEEE Transactions on Power Electronics 24 (7), 1826 -1838. https://doi.org/10.1109/TPEL.2009.2020902

Oggier, G., Garcia, G., Oliva, A., 2011. Modulation strategy to operate the dual active bridge dc-dc converter under soft switching in the whole operating range. IEEE Transactions on Power Electronics 26 (4), 1228-1236. https://doi.org/10.1109/TPEL.2010.2072966

Oggier, G., Garcia, G., Oliva, A., 2013. Analysis of the influence of switching related parameters in the dab converter under soft-switching. Latin American Applied Research 43 (2), 121-129.

Oggier, G., Piris-Botalla, L. E., Garcia, G., 2010. Soft-switching analysis for three-port bidirectional dc-dc converters. In: Industry Applications Conference. INDUSCON 9th IEEE/IAS. pp. 1-6. https://doi.org/10.1109/INDUSCON.2010.5740014

Piris-Botalla, L., Oggier, G., Airabella, A., Garcia, G., 2012. Analysis and evaluation of power switch losses for three-port bidirectional dc-dc converter. In: International Conference on Industrial Technology (ICIT), 2012 IEEE. pp. 950-955. https://doi.org/10.1109/ICIT.2012.6210061

Piris-Botalla, L., Oggier, G., Airabella, A., Garcia, G., 2013. Power losses evaluation of a bidirectional three-port dc-dc converter for hybrid electric system. International Journal of Electrical Power and Energy Systems (58), 1-8. https://doi.org/10.1016/j.ijepes.2013.12.021

Piris Botalla, L., Oggier, G., Garrido, D., Garcia, G., 2016. Auxiliary inductances design of a bidirectional three-port dc-dc converter. IEEE Latin America Transactions 14 (6), 2582-2587. https://doi.org/10.1109/TLA.2016.7555222

Piris-Botalla, L., Oggier, G. G., Airabella, A. M., García, G. O., 2016. Extending the soft-switching operating range of a bidirectional three-port dc-dc converter. Revista Iberoamericana de Autom'atica e Inform'atica Industrial 13 (1), 127-134. https://doi.org/10.1016/j.riai.2015.04.007

Piris-Botalla, L., Oggier, G. G., Garcia, G. O., 2017. Extending the power transfer capability of a three-port dc-dc converter for hybrid energy storage systems. IET Power Electronics 10 (13), 1687-1697. https://doi.org/10.1049/iet-pel.2016.0422

Purgat, P., Bandyopadhyay, S., Qin, Z., Bauer, P. G., 2020. Zero voltage switching criteria of triple active bridge converter. IEEE Transactions on Power Electronics, 1-1. https://doi.org/10.1109/TPEL.2020.3027785

Saadatizadeh, Z., Babaei, E., Blaabjerg, F., Cecati, C., 2021. Three-port high step-up and high step-down dc-dc converter with zero input current ripple. IEEE Transactions on Power Electronics 36 (2), 1804-1813. https://doi.org/10.1109/TPEL.2020.3007959

Sharma, A., Sharma, S., 2019. Review of power electronics in vehicle-to-grid systems. Journal of Energy Storage 21, 337-361. https://doi.org/10.1016/j.est.2018.11.022

Sun, Y., Pei, W., Jia, D., Zhang, G., Wang, H., Zhao, L., Feng, Z., 2020. Application of integrated energy storage system in wind power fluctuation mitigation. Journal of Energy Storage 32 (101835). https://doi.org/10.1016/j.est.2020.101835

Tao, H., Duarte, J., Hendrix, M., 2008a. Three-port triple-half-bridge bidirectional converter with zero-voltage switching. IEEE Transactions on Power Electronics 23 (2), 782 -792. https://doi.org/10.1109/TPEL.2007.915023

Tao, H., Kotsopoulos, A., Duarte, J., Hendrix, M., 2008b. Transformer-coupled multiport zvs bidirectional dc-dc converter with wide input range. IEEE Transaction on Power Electronics 23, 771-781. https://doi.org/10.1109/TPEL.2007.915129

Wang, L., Wang, Z., Li, H., 2012. Asymmetrical duty cycle control and decoupled power flow design of a three-port bidirectional dc-dc converter for fuel cell vehicle application. IEEE Transactions on Power Electronics 27 (2), 891-904. https://doi.org/10.1109/TPEL.2011.2160405

Wu, H., Sun, K., Ding, S., Xing, Y., 2013. Topology derivation of nonisolated three-port dc-dc converters from dic and doc. IEEE Transactions on Power Electronics 28 (7), 3297-3307. https://doi.org/10.1109/TPEL.2012.2221746

Wu, Y., Mahmud, M. H., Christian, S., Fantino, R. A., Gomez, R. A., Zhao, Y., Balda, J. C., 2020. A 150-kw 99% efficient all silicon carbide triple-active-bridge converter for solar-plus-storage systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 1-1. https://doi.org/10.1109/JESTPE.2020.3044572

Ye, Y., Nian, H., Kong, L., Zheng, D., 2019. Efficiency optimization strategy of three port triple active bridge dc-dc converter. In: 2019 22nd International Conference on Electrical Machines and Systems (ICEMS). pp. 1-6. https://doi.org/10.1109/ICEMS.2019.8921669

Zhao, C., Round, S., J.W., K., 2008. An isolated three-port bidirectional dc-dc converter with decoupled power flow management. IEEE Transactions on Power Electronics 23 (5), 2443 -2453. https://doi.org/10.1109/TPEL.2008.2002056

Zhou, H., Bhattacharya, T., Tran, D., Siew, T., Khambadkone, A., 2011. Composite energy storage system involving battery and ultracapacitor with dynamic energy management in microgrid applications. IEEE Transactions on Power Electronics 26 (3), 923-930. https://doi.org/10.1109/TPEL.2010.2095040

Abstract Views

791
Metrics Loading ...

Metrics powered by PLOS ALM




Creative Commons License

Esta revista se publica bajo una Licencia Creative Commons Attribution-NonCommercial-CompartirIgual 4.0 International (CC BY-NC-SA 4.0)

Universitat Politècnica de València     https://doi.org/10.4995/riai

e-ISSN: 1697-7920     ISSN: 1697-7912